• Arakawa, A., J. H. Jung, and C. M. Wu, 2011: Toward unification of the multiscale modeling of the atmosphere. Atmos. Chem. Phys., 11, 37313742, https://doi.org/10.5194/acp-11-3731-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, J., E. G. Patton, and P. P. Sullivan, 2020: Large-eddy simulation of conditionally neutral boundary layers: A mesh resolution sensitivity study. J. Atmos. Sci., 77, 19691991, https://doi.org/10.1175/JAS-D-19-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, R. Berg, and A. Hagen, 2019: National Hurricane Center tropical cyclone report: Hurricane Michael (7–11 October 2018). NOAA/NHC Tech. Rep. AL142018, 86 pp., https://www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic–Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and G. Bryan, 2021: Role of advection of parameterized turbulence kinetic energy in idealized tropical cyclone simulations. J. Atmos. Sci., 78, 35933611, https://doi.org/10.1175/JAS-D-21-0088.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 43134335, https://doi.org/10.1175/JAS-D-18-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., G. H. Bryan, J. A. Zhang, J. J. Cione, and F. D. Marks, 2021a: A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. J. Atmos. Sci., 78, 35593574, https://doi.org/10.1175/JAS-D-20-0227.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, B. Zhou, J. Fang, J. A. Zhang, and F. D. Marks, 2021b: Effect of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone. Mon. Wea. Rev., 149, 20792095, https://doi.org/10.1175/MWR-D-20-0297.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2020: The evaluation of real-time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional (SAR) model performance in 2019 Atlantic hurricane season. Atmosphere, 11, 617, https://doi.org/10.3390/atmos11060617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321344, https://doi.org/10.1007/s10546-009-9379-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2013: Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones. Oceanography, 26, 5867, https://doi.org/10.5670/oceanog.2013.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, A. L. M., 1992: The structure of turbulence in the near-neutral atmospheric boundary layer. J. Atmos. Sci., 49, 226239, https://doi.org/10.1175/1520-0469(1992)049<0226:TSOTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and C. S. Bretherton, 2019: TKE-based moist Eddy-Diffusivity Mass-Flux (EDMF) parameterization for vertical turbulent mixing. Wea. Forecasting, 34, 869886, https://doi.org/10.1175/WAF-D-18-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., X. Zhang, W. Ramstrom, S. Gopalakrishan, F. D. Marks, and J. A. Zhang, 2020: High-resolution ensemble HFV3 forecasts of Hurricane Michael (2018): Rapid intensification in shear. Mon. Wea. Rev., 148, 20092032, https://doi.org/10.1175/MWR-D-19-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., and Coauthors, 2021: 2019 Atlantic hurricane forecasts from the global-nested Hurricane Analysis and Forecast System: Composite statistics and key events. Wea. Forecasting, 36, 519538, https://doi.org/10.1175/WAF-D-20-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting Model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, https://doi.org/10.1175/2008MWR2220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930, https://doi.org/10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanish, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, https://doi.org/10.1023/A:1018915827400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prandtl, L., 1925: 7. Bericht über untersuchungen zur ausgebildeten turbulenz. Z. Angew. Math. Mech., 5, 136139, https://doi.org/10.1002/zamm.19250050212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodier, Q., V. Masson, F. Couvreux, and A. Paci, 2017: Evaluation of a buoyancy and shear based mixing length for a turbulence scheme. Front. Earth Sci., 5, 65, https://doi.org/10.3389/feart.2017.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, https://doi.org/10.1175/JAS3888.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 670 pp.

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vogelezang, D. H. P., and A. A. M. Holtslag, 1996: Evaluation and model impacts of alternative boundary-layer height formulations. Bound.-Layer Meteor., 81, 245269, https://doi.org/10.1007/BF02430331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 293 284 27
Full Text Views 102 101 12
PDF Downloads 105 103 13

Evaluation and Improvement of a TKE-Based Eddy-Diffusivity Mass-Flux (EDMF) Planetary Boundary Layer Scheme in Hurricane Conditions

Xiaomin ChenaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
bNorthern Gulf Institute, Mississippi State University, Stennis Space Center, Mississippi

Search for other papers by Xiaomin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9731-6989
,
George H. BryancNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
,
Andrew HazeltonaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
dCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Andrew Hazelton in
Current site
Google Scholar
PubMed
Close
,
Frank D. MarksaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
, and
Pat FitzpatrickeDepartment of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas

Search for other papers by Pat Fitzpatrick in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurately representing boundary layer turbulent processes in numerical models is critical to improve tropical cyclone forecasts. A new turbulence kinetic energy (TKE)-based moist eddy-diffusivity mass-flux (EDMF-TKE) planetary boundary layer scheme has been implemented in NOAA’s Hurricane Analysis and Forecast System (HAFS). This study evaluates EDMF-TKE in hurricane conditions based on a recently developed framework using large-eddy simulation (LES). Single-column modeling tests indicate that EDMF-TKE produces much greater TKE values below 500-m height than LES benchmark runs in different high-wind conditions. To improve these results, two parameters in the TKE scheme were modified to ensure a match between the PBL and surface-layer parameterizations. Additional improvements were made by reducing the maximum allowable mixing length to 40 m based on LES and observations, by adopting a different definition of boundary layer height, and by reducing nonlocal mass fluxes in high-wind conditions. With these modifications, the profiles of TKE, eddy viscosity, and winds compare much better with LES results. Three-dimensional idealized simulations and an ensemble of HAFS forecasts of Hurricane Michael (2018) consistently show that the modified EDMF-TKE tends to produce a stronger vortex with a smaller radius of maximum wind than the original EDMF-TKE, while the radius of gale-force wind is unaffected. The modified EDMF-TKE code produces smaller eddy viscosity within the boundary layer compared to the original code, which contributes to stronger inflow, especially within the annulus of 1–3 times the radius of maximum wind. The modified EDMF-TKE shows promise to improve forecast skill of rapid intensification in sheared environments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xiaomin.chen@noaa.gov

Abstract

Accurately representing boundary layer turbulent processes in numerical models is critical to improve tropical cyclone forecasts. A new turbulence kinetic energy (TKE)-based moist eddy-diffusivity mass-flux (EDMF-TKE) planetary boundary layer scheme has been implemented in NOAA’s Hurricane Analysis and Forecast System (HAFS). This study evaluates EDMF-TKE in hurricane conditions based on a recently developed framework using large-eddy simulation (LES). Single-column modeling tests indicate that EDMF-TKE produces much greater TKE values below 500-m height than LES benchmark runs in different high-wind conditions. To improve these results, two parameters in the TKE scheme were modified to ensure a match between the PBL and surface-layer parameterizations. Additional improvements were made by reducing the maximum allowable mixing length to 40 m based on LES and observations, by adopting a different definition of boundary layer height, and by reducing nonlocal mass fluxes in high-wind conditions. With these modifications, the profiles of TKE, eddy viscosity, and winds compare much better with LES results. Three-dimensional idealized simulations and an ensemble of HAFS forecasts of Hurricane Michael (2018) consistently show that the modified EDMF-TKE tends to produce a stronger vortex with a smaller radius of maximum wind than the original EDMF-TKE, while the radius of gale-force wind is unaffected. The modified EDMF-TKE code produces smaller eddy viscosity within the boundary layer compared to the original code, which contributes to stronger inflow, especially within the annulus of 1–3 times the radius of maximum wind. The modified EDMF-TKE shows promise to improve forecast skill of rapid intensification in sheared environments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xiaomin.chen@noaa.gov
Save