Tornado Heading and Speed Changes Associated with Large and Intense Internal Rear-Flank Surges in Three Supercells

Bruce D. Lee aDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Bruce D. Lee in
Current site
Google Scholar
PubMed
Close
and
Catherine A. Finley aDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Catherine A. Finley in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tornado motion changes occurring with major internal rear-flank momentum surges are examined in three significant tornado-producing supercells. The analysis primarily uses fixed-site Doppler radar data, but also utilizes in situ and videographic observations when available. In the cases examined, the peak lowest-level remotely sensed or in situ rear-flank surge wind speeds ranged from 48 to at least 63 m s−1. Contemporaneous with major surges impacting the tornadoes and their parent low-level mesocyclones, longer-duration tornado heading changes were leftward and ranged from 30° to 55°. In all cases, the tornado speed increased substantially upon surge impact, with tornado speeds approximately doubling in two of the events. A storm-relative change in the hook echo orientation accompanied the major surges and provided a signal that a marked leftward heading change for an ongoing tornado was under way. Concurrent with the surge interaction, the hook echo tip and associated low-level mesocyclone turned leftward while also moving in a storm-relative downshear direction. The major rear-flank internal surges influenced tornado motion such that a generally favorable storm updraft-relative position was maintained. In all cases, the tornado lasted well beyond (≥21 min) the time of the surge-associated left turn with no evident marked loss of intensity until well down-track of the turn. The local momentum balance between outflow and inflow that bounds the tornado or its parent circulation, especially the directionality evolution of the bounding momentum, is the most apparent explanation for tornado down-track or off-track accelerations in the featured events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bruce D. Lee, bruce.lee@und.edu

Abstract

Tornado motion changes occurring with major internal rear-flank momentum surges are examined in three significant tornado-producing supercells. The analysis primarily uses fixed-site Doppler radar data, but also utilizes in situ and videographic observations when available. In the cases examined, the peak lowest-level remotely sensed or in situ rear-flank surge wind speeds ranged from 48 to at least 63 m s−1. Contemporaneous with major surges impacting the tornadoes and their parent low-level mesocyclones, longer-duration tornado heading changes were leftward and ranged from 30° to 55°. In all cases, the tornado speed increased substantially upon surge impact, with tornado speeds approximately doubling in two of the events. A storm-relative change in the hook echo orientation accompanied the major surges and provided a signal that a marked leftward heading change for an ongoing tornado was under way. Concurrent with the surge interaction, the hook echo tip and associated low-level mesocyclone turned leftward while also moving in a storm-relative downshear direction. The major rear-flank internal surges influenced tornado motion such that a generally favorable storm updraft-relative position was maintained. In all cases, the tornado lasted well beyond (≥21 min) the time of the surge-associated left turn with no evident marked loss of intensity until well down-track of the turn. The local momentum balance between outflow and inflow that bounds the tornado or its parent circulation, especially the directionality evolution of the bounding momentum, is the most apparent explanation for tornado down-track or off-track accelerations in the featured events.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bruce D. Lee, bruce.lee@und.edu
Save
  • Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 20452069, https://doi.org/10.1175/1520-0469(1999)056<2045:ANSOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Agee, E., J. Snow, and P. Clare, 1976: Multiple vortex features in the tornado cyclone and the occurrence of tornado families. Mon. Wea. Rev., 104, 552563, https://doi.org/10.1175/1520-0493(1976)104<0552:MVFITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, J. R., J. L. Schroeder, and J. M. Wurman, 2006: High-resolution dual-Doppler analysis of the 29 May 2001 Kress, Texas, cyclic supercell. Mon. Wea. Rev., 134, 31253148, https://doi.org/10.1175/MWR3246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920, https://doi.org/10.1175/2009WAF2222206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, and A. L. Pazmany, 2004: The vertical structure of a tornado near Happy, Texas, on 5 May 2002: High-resolution, mobile, W-band, Doppler radar observations. Mon. Wea. Rev., 132, 23252337, https://doi.org/10.1175/1520-0493(2004)132<2325:TVSOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., C. C. Weiss, M. M. French, E. M. Holthaus, R. L. Tanamachi, S. Frasier, and A. L. Pazmany, 2007: The structure of tornadoes near Attica, Kansas, on 12 May 2004: High-resolution, mobile, Doppler radar observations. Mon. Wea. Rev., 135, 475506, https://doi.org/10.1175/MWR3295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., J. C. Snyder, and J. B. Houser, 2015: A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Wea. Forecasting, 30, 525552, https://doi.org/10.1175/WAF-D-14-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2018: The multiple-vortex structure of the El Reno, Oklahoma, tornado on 31 May 2013. Mon. Wea. Rev., 146, 24832502, https://doi.org/10.1175/MWR-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011, https://doi.org/10.1175/1520-0493(1978)106<0995:MEATSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422424.

  • Chrisman, J. N., 2013: Dynamic scanning. NEXRAD Now, No. 22, WSR-88D Radar Operations Center, Norman, OK, 1–3, https://www.roc.noaa.gov/WSR88D/PublicDocs/NNOW/NNow22c.pdf.

  • Chrisman, J. N., 2014: Multiple elevation scan option for SAILS (MESOSAILS)—The next step in dynamic scanning for the WSR-88D. WSR-88D Radar Operations Center, 27 pp., https://www.roc.noaa.gov/WSR88D/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. E. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114, https://doi.org/10.1029/GM079p0105.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., C. A. Doswell, D. W. Burgess, and J. F. Weaver, 1994: Some noteworthy aspects of the Hesston, Kansas, tornado family of 13 March 1990. Bull. Amer. Meteor. Soc., 75, 10071017, https://doi.org/10.1175/1520-0477(1994)075<1007:SNAOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 McLean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finley, C. A., and B. D. Lee, 2004: High resolution mobile mesonet observations of RFD surges in the June 9 Basset, Nebraska supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.3, https://ams.confex.com/ams/11aram22sls/webprogram/Paper82005.html.

  • Finley, C. A., and B. D. Lee, 2008: Mobile mesonet observations of an intense RFD and multiple RFD gust fronts in the May 23 Quinter, Kansas tornadic supercell during TWISTEX 2008. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., P3.18, https://ams.confex.com/ams/24SLS/techprogram/paper_142133.htm.

  • Finley, C. A., L. Orf, B. D. Lee, and R. B. Wilhelmson, 2018: High-resolution simulation of a violent tornado in the 27 April 2011 outbreak environment. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 10B.5, https://ams.confex.com/ams/29SLS/webprogram/Paper348812.html.

  • French, M. M., and D. M. Kingfield, 2019: Dissipation characteristics of tornado vortex signatures associated with long-duration tornadoes. J. Appl. Meteor. Climatol., 58, 317339, https://doi.org/10.1175/JAMC-D-18-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., H. B. Bluestein, I. PopStefanija, C. A. Baldi, and R. T. Bluch, 2014: Mobile, phased-array, Doppler radar observations of tornadoes at X band. Mon. Wea. Rev., 142, 10101036, https://doi.org/10.1175/MWR-D-13-00101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, M. M., P. S. Skinner, L. J. Wicker, and H. B. Bluestein, 2015: Documenting a rare tornado merger observed in the 24 May 2011 El Reno–Piedmont, Oklahoma, supercell. Mon. Wea. Rev., 143, 30253043, https://doi.org/10.1175/MWR-D-14-00349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1992: Memoirs of an Effort to Unlock the Mystery of Severe Storms during the 50 Years, 1942–1992. University of Chicago, 298 pp.

  • Grzych, M. L., B. D. Lee, and C. A. Finley, 2007: Thermodynamic analysis of supercell rear-flank downdrafts from project ANSWERS. Mon. Wea. Rev., 135, 240246, https://doi.org/10.1175/MWR3288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargrove, B., 2018: The Man Who Caught the Storm. Simon & Schuster, 296 pp.

  • Heinselman, P. L., and S. M. Torres, 2011: High-temporal-resolution capabilities of the National Weather Radar Testbed Phased-Array Radar. J. Appl. Meteor. Climatol., 50, 579593, https://doi.org/10.1175/2010JAMC2588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., D. L. Priegnitz, K. L. Manross, T. M. Smith, and R. W. Adams, 2008: Rapid sampling of severe storms by the National Weather Radar testbed phased array radar. Wea. Forecasting, 23, 808824, https://doi.org/10.1175/2008WAF2007071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirth, B. D., J. L. Schroeder, and C. C. Weiss, 2008: Surface analysis of the rear-flank downdraft outflow in two tornadic supercells. Mon. Wea. Rev., 136, 23442363, https://doi.org/10.1175/2007MWR2285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houser, J. L., H. B. Bluestein, and J. C. Snyder, 2015: Rapid-scan, polarimetric, Doppler radar observations of tornadogenesis and tornado dissipation in a tornadic supercell: The “El Reno, Oklahoma” storm of 24 May 2011. Mon. Wea. Rev., 143, 26852710, https://doi.org/10.1175/MWR-D-14-00253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, B., E. N. Rasmussen, T. P. Marshall, and M. A. Mabey, 1983: Storm scale structure of the Pampa storm. 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 8588.

  • Karstens, C. D., T. M. Samaras, B. D. Lee, W. A. Gallus, and C. A. Finley, 2010: Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 25702588, https://doi.org/10.1175/2010MWR3201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571180, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. D. Schenkman, 2008: Interpretation of the “flying eagle” radar signature in supercells. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc. P14.2, https://ams.confex.com/ams/pdfpapers/141917.pdf.

  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurdzo, J. M., D. J. Bodine, B. L. Cheong, and R. D. Palmer, 2015: High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Mon. Wea. Rev., 143, 27112735, https://doi.org/10.1175/MWR-D-14-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and P. S. Skinner, 2004: Thermodynamic and kinematic analysis of multiple RFD surges for the 24 June 2003 Manchester, SD, cyclic tornadic supercell during Project ANSWERS 2003. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P11.2, https://ams.confex.com/ams/11aram22sls/webprogram/Paper82000.html.

  • Lee, B. D., C. A. Finley, C. D. Karstens, and T. M. Samaras, 2010: Surface observations of the rear-flank downdraft evolution associated with the Aurora, NE tornado of 17 June 2009. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P8.27, https://ams.confex.com/ams/25SLS/webprogram/Paper176133.html.

  • Lee, B. D., C. A. Finley, and T. M. Samaras, 2011: Surface analysis near and within the Tipton, Kansas, tornado on 29 May 2008. Mon. Wea. Rev., 139, 370386, https://doi.org/10.1175/2010MWR3454.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and M. Umscheid, 2008: The Greensburg, Kansas tornadic storm: A storm of extremes. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 2.4, http://ams.confex.com/ams/pdfpapers/141811.pdf.

  • Magsig, M. A., and M. D. Austin, 2014: An evaluation of the potential impact of SAILS on the warning decision making of the 31 May 2013 El Reno, OK storm. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 36, https://ams.confex.com/ams/27SLS/webprogram/Paper255909.html.

  • Markowski, P. M., and Y. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 310, https://doi.org/10.1016/j.atmosres.2008.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 1692–1721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Export Citation
  • Markowski, P. M., and Coauthors, 2012: The pretornadic phase of the Goshen County, Wyoming, supercell of 5 June 2009 intercepted by VORTEX 2. Part II: Intensification of low-level rotation. Mon. Wea. Rev., 140, 29162938, https://doi.org/10.1175/MWR-D-11-00337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCDC, 2008: Storm Data. Vol. 50, No. 5, National Climatic Data Center, Asheville, NC, 622 pp.

  • NCDC, 2013: Storm Data. Vol. 55, No. 5, National Climatic Data Center, Asheville, NC, 684 pp.

  • NCDC, 2017: Storm Data. Vol. 59, No. 7, National Climatic Data Center, Asheville, NC, 789 pp.

  • Nielson, E. R., and R. S. Schumacher, 2020: Dynamical mechanisms supporting extreme rainfall accumulations in the Houston “Tax Day” 2016 flood. Mon. Wea. Rev., 148, 83109, https://doi.org/10.1175/MWR-D-19-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nixon, C. J., and J. T. Allen, 2021: Anticipating deviant tornado motion using a simple hodograph technique. Wea. Forecasting, 36, 219235, https://doi.org/10.1175/WAF-D-20-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: Service assessment: May 2013 Oklahoma tornadoes and flash flooding. National Weather Service, 42 pp. + appendixes, https://www.weather.gov/media/publications/assessments/13oklahoma_tornadoes.pdf.

  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track, violent tornado in a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., J. B. Mead, H. B. Bluestein, J. C. Snyder, and J. B. Houser, 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler-radar system. J. Atmos. Oceanic Technol., 30, 13981413, https://doi.org/10.1175/JTECH-D-12-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pecos Hank, 2020: Fastest moving tornado—New World Record. YouTube, Accessed 1 March 2021, https://www.youtube.com/watch?v=gMws8ueXJ7U.

  • Richardson, Y. P., P. Markowski, J. N. Marquis, J. Wurman, K. A. Kosiba, P. Robinson, D. W. Burgess, and C. C. Weiss, 2012: Tornado maintenance and demise in the Goshen County, Wyoming supercell of 5 June 2009 intercepted by VORTEX2. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 13.3, https://ams.confex.com/ams/26SLS/webprogram/Paper212526.html.

  • Riganti, C. J., and A. L. Houston, 2017: Rear-flank outflow dynamics and thermodynamics in the 10 June 2010 Last Chance, Colorado, supercell. Mon. Wea. Rev., 145, 24872504, https://doi.org/10.1175/MWR-D-16-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnić, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkman, A. D., M. Xue, and D. T. Dawson II, 2016: The cause of internal outflow surges in a high-resolution simulation of the 8 May 2003 Oklahoma City tornadic supercell. J. Atmos. Sci., 73, 353370, https://doi.org/10.1175/JAS-D-15-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seimon, A., J. T. Allen, T. A. Seimon, S. J. Talbot, and D. K. Hoadley, 2016: Crowdsourcing the El Reno 2013 tornado: A new approach for collation and display of storm chaser imagery for scientific applications. Bull. Amer. Meteor. Soc., 97, 20692084, https://doi.org/10.1175/BAMS-D-15-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, https://doi.org/10.1175/MWR-D-10-05078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, L. J. Wicker, C. K. Potvin, and D. C. Dowell, 2015: Forcing mechanisms for an internal rear-flank downdraft momentum surge in the 18 May 2010 Dumas, TX, supercell. Mon. Wea. Rev., 143, 43054330, https://doi.org/10.1175/MWR-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skow, K. D., and C. Cogil, 2017: High-resolution aerial survey and radar analysis of quasi-linear convective system surface vortex damage paths from 31 August 2014. Wea. Forecasting, 32, 441467, https://doi.org/10.1175/WAF-D-16-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., and H. B. Bluestein, 2014: Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Wea. Forecasting, 29, 799827, https://doi.org/10.1175/WAF-D-14-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., H. B. Bluestein, J. B. Houser, S. J. Frasier, and K. M. Hardwick, 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125, https://doi.org/10.1175/MWR-D-11-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umscheid, M., 2007: May 5, 2007: A “career storm”—Greensburg, KS. Accessed 18 March 2021, http://www.underthemeso.com/blog/?p=364.

  • Umscheid, M., and J. Hutton, 2008: A state record tornado outbreak: Preliminary investigation of 23 May 2008 supercells and tornadoes. NOAA, 31 pp., https://www.deepconvection.com/12HPC/presentations/Mike%20Umscheid-2008May23.pdf.

  • Wakimoto, R. M., 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetric analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258, https://doi.org/10.1175/2010MWR3568.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522–543, https://doi.org/10.1175/1520-0493(1992)120<0522:OOACTP>2.0.CO;2.

    • Crossref
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, D. C. Dowell, and H. B. Bluestein, 2003: The Kellerville tornado during VORTEX: Damage survey and Doppler radar analysis. Mon. Wea. Rev., 131, 21972221, https://doi.org/10.1175/1520-0493(2003)131<2197:TKTDVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and Coauthors, 2016: Aerial damage survey of the 2013 El Reno tornado combined with mobile radar data. Mon. Wea. Rev., 144, 17491776, https://doi.org/10.1175/MWR-D-15-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weadon, M., P. Heinselman, D. Forsyth, W. E. Benner, G. S. Torok, and J. Kimpel, 2009: Multifunction phased array radar. Bull. Amer. Meteor. Soc., 90, 385389, https://doi.org/10.1175/2008BAMS2666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C., D. C. Dowell, J. L. Schroeder, P. S. Skinner, A. E. Reinhart, P. M. Markowski, and Y. P. Richardson, 2015: A comparison of near-surface buoyancy and baroclinity across three VORTEX2 supercell intercepts. Mon. Wea. Rev., 143, 27362753, https://doi.org/10.1175/MWR-D-14-00307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 21352164, https://doi.org/10.1175/1520-0493(2000)128<2135:FROOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and K. Kosiba, 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174, https://doi.org/10.1175/WAF-D-12-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., Y. Richardson, C. Alexander, S. Weygandt, and P. F. Zhang, 2007: Dual-Doppler and single-Doppler analysis of a tornadic storm undergoing mergers and repeated tornadogenesis. Mon. Wea. Rev., 135, 736758, https://doi.org/10.1175/MWR3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, https://doi.org/10.1175/2010MWR3330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Robinson, and T. Marshall, 2014: The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bull. Amer. Meteor. Soc., 95, 3145, https://doi.org/10.1175/BAMS-D-13-00221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, https://doi.org/10.1175/BAMS-88-11-1753.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 445 0 0
Full Text Views 464 233 7
PDF Downloads 484 239 11