• Ahmadov, R., and Coauthors, 2017: Using VIIRS Fire Radiative Power data to simulate biomass burning emissions, plume rise and smoke transport in a real-time air quality modeling system. 2017 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, IEEE, 28062808, https://doi.org/10.1109/IGARSS.2017.8127581.

    • Search Google Scholar
    • Export Citation
  • Alexander, C. R., and Coauthors, 2018: Development of the High-Resolution Rapid Refresh Ensemble (HRRRE). 22nd Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Austin, TX, Amer. Meteor. Soc., 11.3, https://ams.confex.com/ams/98Annual/webprogram/Paper335526.html.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, https://doi.org/10.1111/j.1600-0870.2008.00361.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp, and M. J. Post, 1992: Smoke-column observations from two forest fires using Doppler lidar and Doppler radar. J. Appl. Meteor., 31, 13281349, https://doi.org/10.1175/1520-0450(1992)031<1328:SCOFTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., R. D. Cess, and F. B. Yurevich, 1983: The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models. J. Atmos. Sci., 40, 116138, https://doi.org/10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coen, J. L., M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and K. M. Yedinak, 2013: WRF-Fire: Coupled weather-wildland fire modeling with the Weather Research and Forecasting Model. J. Appl. Meteor. Climatol., 52, 1638, https://doi.org/10.1175/JAMC-D-12-023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Csiszar, I., W. Schroeder, L. Giglio, E. Ellicott, K. P. Vadrevu, C. O. Justice, and B. Wind, 2014: Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. J. Geophys. Res. Atmos., 119, 803816, https://doi.org/10.1002/2013JD020453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., 1981: A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ., 11, 221229, https://doi.org/10.1016/0034-4257(81)90021-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., K. M. Longo, and M. O. Andreae, 2006: Impact of including the plume rise of vegetation fires in numerical simulations of associated atmospheric pollutants. Geophys. Res. Lett., 33, L17808, https://doi.org/10.1029/2006GL026608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., K. M. Longo, R. Chatfield, D. Latham, M. Dias, and M. O. Andreae, 2007: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys., 7, 33853398, https://doi.org/10.5194/acp-7-3385-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., A. Tupper, D. Rosenfeld, R. Servranckx, and R. McRae, 2006: Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere. Geophys. Res. Lett., 33, L05815, https://doi.org/10.1029/2005GL025161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., D. T. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, and S. Godin-Beekmann, 2010: The untold story of pyrocumulonimbus. Bull. Amer. Meteor. Soc., 91, 11931210, https://doi.org/10.1175/2010BAMS3004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., G. Kablick III, and P. Caffrey, 2016: Dust-infused baroclinic cyclone storm clouds: The evidence, meteorology, and some implications. Geophys. Res. Lett., 43, 12 64312 650, https://doi.org/10.1002/2016GL071801.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., L. Boschetti, D. Roy, A. A. Hoffmann, and M. Humber, 2016: Collection 6 MODIS burned area product user’s guide version 1.0. NOAA/USGS, 26 pp., https://modis-land.gsfc.nasa.gov/pdf/MODIS_C6_BA_User_Guide_1.0.pdf.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giglio, L., L. Boschetti, D. Roy, M. L. Humber, and C. O. Justice, 2018: The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ., 217, 7285, https://doi.org/10.1016/j.rse.2018.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, https://doi.org/10.1029/2000JD000053.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, S. McKeen, R. Schmitz, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmos. Environ., 39, 69576975, https://doi.org/10.1016/j.atmosenv.2005.04.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., H. Shao, D. Stark, K. Newman, C. Zhou, and X. Zhang, 2016: Gridpoint Statistical Interpolation (GSI) user’s guide version 3.5. Developmental Testbed Center, 148 pp., https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.5.pdf.

    • Crossref
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and S. A. Christopher, 2009: Injection heights of biomass burning debris estimated from WSR-88D radar observations. IEEE Trans. Geosci. Remote Sens., 47, 25992605, https://doi.org/10.1109/TGRS.2009.2014225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and S. A. Christopher, 2010a: Satellite and radar observations of the 9 April 2009 Texas and Oklahoma grassfires. Bull. Amer. Meteor. Soc., 91, 455460, https://doi.org/10.1175/2009BAMS2919.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and S. A. Christopher, 2010b: Satellite and radar remote sensing of southern plains grassfires: A case study. J. Appl. Meteor. Climatol., 49, 21332146, https://doi.org/10.1175/2010JAMC2472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., S. A. Christopher, and W. Petersen, 2009: Dual polarimetric radar characteristics of an apartment fire. J. Atmos. Oceanic Technol., 26, 22572269, https://doi.org/10.1175/2009JTECHA1290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast system. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Coauthors, 2020: Assimilation of GOES-16 radiances and retrievals into the Warn-on-Forecast System. Mon. Wea. Rev., 148, 18291859, https://doi.org/10.1175/MWR-D-19-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and Coauthors, 1997: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res., 102, 16 81516 830, https://doi.org/10.1029/97JD01496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., and Coauthors, 1998a: Smoke, Clouds, and Radiation‐Brazil (SCAR‐B) experiment. J. Geophys. Res., 103, 31 78331 808, https://doi.org/10.1029/98JD02281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., R. Kleidman, and M. D. King, 1998b: SCAR‐B fires in the tropics: Properties and remote sensing from EOS‐MODIS. J. Geophys. Res., 103, 31 95531 968, https://doi.org/10.1029/98JD02460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, C., L. J. Wicker, and P. S. Skinner, 2021: Updraft-based adaptive assimilation of radial velocity observations in a Warn-on-Forecast System. Wea. Forecasting, 36, 2137, https://doi.org/10.1175/WAF-D-19-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, https://doi.org/10.1029/2007GL029253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., and C. B. Clements, 2016: Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys., 16, 40054022, https://doi.org/10.5194/acp-16-4005-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lareau, N. P., N. J. Nauslar, and J. T. Abotzoglou, 2018: The Carr Fire Vortex: A case of pyrotornadogenesis? Geophys. Res. Lett., 45, 13 10713 115, https://doi.org/10.1029/2018GL080667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsey, D., S. Miller, and L. Grasso, 2010: The impacts of the 9 April 2009 dust and smoke on convection. Bull. Amer. Meteor. Soc., 91, 991996, https://doi.org/10.1175/2010BAMS2964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., H. Shao, J. A. Coakley, J. A. Curry, J. A. Haggerty, and M. A. Tschudi, 2003: Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX: Implication to aerosols’ indirect radioactive effect. J. Geophys. Res., 108, 4006, https://doi.org/10.1029/2001JD001395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McRae, R. H., J. J. Sharples, S. R. Wilkes, and A. Walker, 2013: An Australian pyro-tornadogenesis event. Nat. Hazards, 65, 18011811, https://doi.org/10.1007/s11069-012-0443-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melnikov, V., D. Zrnić, and R. Rabin, 2009: Polarimetric radar properties of smoke plumes: A model. J. Geophys. Res., 114, D21204, https://doi.org/10.1029/2009JD012647.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peace, M., T. Mattner, G. Mills, J. Kepert, and L. McCaw, 2015: Fire-modified meteorology in a coupled fire–atmosphere model. J. Appl. Meteor. Climatol., 54, 704720, https://doi.org/10.1175/JAMC-D-14-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, M. D. Fromm, J. W. Hair, C. F. Butler, and M. A. Fenn, 2015: The 2013 Rim Fire: Implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull. Amer. Meteor. Soc., 96, 229247, https://doi.org/10.1175/BAMS-D-14-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, D. A., E. J. Hyer, J. R. Campbell, J. E. Solbrig, and M. D. Fromm, 2017: A conceptual model for development of intense pyrocumulonimbus in western North America. Mon. Wea. Rev., 145, 22352255, https://doi.org/10.1175/MWR-D-16-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, C. A., III, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, 2002: Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287, 11321141, https://doi.org/10.1001/jama.287.9.1132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, B. E., 2012: Atmospheric interactions with wildland fire behaviour—I. Basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire, 21, 779801, https://doi.org/10.1071/WF11128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prins, E. M., and W. P. Menzel, 1992: Geostationary satellite detection of biomass burning in South America. Int. J. Remote Sens., 13, 27832799, https://doi.org/10.1080/01431169208904081.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prins, E. M., and W. P. Menzel, 1994: Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991. J. Geophys. Res., 99, 16 71916 735, https://doi.org/10.1029/94JD01208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prins, E. M., J. Feltz, W. Menzel, and D. Ward, 1998: An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J. Geophys. Res., 103, 31 82131 835, https://doi.org/10.1029/98JD01720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reader, T. W., R. Flin, K. Mearns, and B. H. Cuthbertson, 2009: Developing a team performance framework for the intensive care unit. Crit. Care Med., 37, 17871793, https://doi.org/10.1097/CCM.0b013e31819f0451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remer, A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, https://doi.org/10.1175/JAS3385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, G., M. J. Wooster, G. L. W. Perry, N. Drake, L.-M. Rebelo, and F. Dipotso, 2005: Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. J. Geophys. Res., 110, D21111, https://doi.org/10.1029/2005JD006018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 1988: Enhancement of surface cooling due to forest fire smoke. Science, 242, 911913, https://doi.org/10.1126/science.242.4880.911.

  • Robock, A., 1991: Surface cooling due to forest fire smoke. J. Geophys. Res., 96, 20869, https://doi.org/10.1029/91JD02043.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viegas, D. X., 1998: Convective processes in forest fires. Buoyant Convection in Geophysical Flows, E. J. Plate et al., Eds., Kluwer and Academic Publishers, 401420.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., J. F. Purdom, and T. L. Schneider, 1995: Observing forest fires with the GOES-8, 3.9-μm imaging channel. Wea. Forecasting, 10, 803808, https://doi.org/10.1175/1520-0434(1995)010<0803:OFFWTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, J. F., D. T. Lindsey, D. E. Bikos, C. C. Schmidt, and E. Prins, 2004: Fire detection using GOES‐11 rapid scan imagery. Wea. Forecasting, 19, 496510, https://doi.org/10.1175/1520-0434(2004)019<0496:FDUGRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast system. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global Forecast System. Mon. Wea. Rev., 136, 463482, https://doi.org/10.1175/2007MWR2018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wooster, M. J., G. Roberts, G. L. Perry, and Y. J. Kaufman, 2005: Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res., 110, D24311, https://doi.org/10.1029/2005JD006318.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and K. H. Knopfmeier, 2019: Application of Warn-on-Forecast system for flash-flood producing heavy convective rainfall events. Quart. J. Roy. Meteor. Soc., 145, 23852403, https://doi.org/10.1002/qj.3568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. S. Reid, and B. N. Holben, 2005: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. Geophys. Res. Lett., 32, L15803, https://doi.org/10.1029/2005GL023254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D., P. Zhang, V. Melnikov, and D. Mirkovic, 2020: Of fire and smoke plumes, polarimetric radar characteristics. Atmosphere, 11, 363, https://doi.org/10.3390/atmos11040363.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 314 257 15
Full Text Views 112 98 3
PDF Downloads 128 107 2

Prototype of a Warn-on-Forecast System for Smoke (WoFS-Smoke)

Thomas JonesaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Thomas Jones in
Current site
Google Scholar
PubMed
Close
,
Ravan AhmadovdCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
eNOAA/OAR/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Ravan Ahmadov in
Current site
Google Scholar
PubMed
Close
,
Eric JamesdCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado
eNOAA/OAR/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Eric James in
Current site
Google Scholar
PubMed
Close
,
Gabriel PereirafFederal University of São João del-Rei, São João del-Rei, Brazil

Search for other papers by Gabriel Pereira in
Current site
Google Scholar
PubMed
Close
,
Saulo FreitasgUSRA/GESTAR and NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Saulo Freitas in
Current site
Google Scholar
PubMed
Close
, and
Georg GrelleNOAA/OAR/Global Systems Laboratory, Boulder, Colorado

Search for other papers by Georg Grell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This research begins the process of creating an ensemble-based forecast system for smoke aerosols generated from wildfires using a modified version of the National Severe Storms Laboratory (NSSL) Warn-on-Forecast System (WoFS). The existing WoFS has proven effective in generating short-term (0–3 h) probabilistic forecasts of high-impact weather events such as storm rotation, hail, severe winds, and heavy rainfall. However, it does not include any information on large smoke plumes generated from wildfires that impact air quality and the surrounding environment. The prototype WoFS-Smoke system is based on the deterministic High-Resolution Rapid Refresh-Smoke (HRRR-Smoke) model. HRRR-Smoke runs over a continental United States (CONUS) domain with a 3-km horizontal grid spacing, with hourly forecasts out to 48 h. The smoke plume injection algorithm in HRRR-Smoke is integrated into the WoFS forming WOFS-Smoke so that the advantages of the rapidly cycling, ensemble-based WoFS can be used to generate short-term (0–3 h) probabilistic forecasts of smoke. WoFS-Smoke forecasts from three wildfire cases during 2020 show that the system generates a realistic representation of wildfire smoke when compared against satellite observations. Comparison of smoke forecasts with radar data show that forecast smoke reaches higher levels than radar-detected debris, but exceptions to this are noted. The radiative effect of smoke on surface temperature forecasts is evident, which reduces forecast errors compared to experiments that do not include smoke.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas A. Jones, Thomas.Jones@noaa.gov

Abstract

This research begins the process of creating an ensemble-based forecast system for smoke aerosols generated from wildfires using a modified version of the National Severe Storms Laboratory (NSSL) Warn-on-Forecast System (WoFS). The existing WoFS has proven effective in generating short-term (0–3 h) probabilistic forecasts of high-impact weather events such as storm rotation, hail, severe winds, and heavy rainfall. However, it does not include any information on large smoke plumes generated from wildfires that impact air quality and the surrounding environment. The prototype WoFS-Smoke system is based on the deterministic High-Resolution Rapid Refresh-Smoke (HRRR-Smoke) model. HRRR-Smoke runs over a continental United States (CONUS) domain with a 3-km horizontal grid spacing, with hourly forecasts out to 48 h. The smoke plume injection algorithm in HRRR-Smoke is integrated into the WoFS forming WOFS-Smoke so that the advantages of the rapidly cycling, ensemble-based WoFS can be used to generate short-term (0–3 h) probabilistic forecasts of smoke. WoFS-Smoke forecasts from three wildfire cases during 2020 show that the system generates a realistic representation of wildfire smoke when compared against satellite observations. Comparison of smoke forecasts with radar data show that forecast smoke reaches higher levels than radar-detected debris, but exceptions to this are noted. The radiative effect of smoke on surface temperature forecasts is evident, which reduces forecast errors compared to experiments that do not include smoke.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas A. Jones, Thomas.Jones@noaa.gov
Save