ACCESS-C: Australian Convective-Scale NWP with Hourly 4D-Var Data Assimilation

Susan Rennie aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Susan Rennie in
Current site
Google Scholar
PubMed
Close
,
Shaun Cooper aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Shaun Cooper in
Current site
Google Scholar
PubMed
Close
,
Peter Steinle aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Peter Steinle in
Current site
Google Scholar
PubMed
Close
,
Gary Dietachmayer aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Gary Dietachmayer in
Current site
Google Scholar
PubMed
Close
,
Monika Krysta aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Monika Krysta in
Current site
Google Scholar
PubMed
Close
,
Charmaine Franklin aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Charmaine Franklin in
Current site
Google Scholar
PubMed
Close
,
Chris Bridge aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Chris Bridge in
Current site
Google Scholar
PubMed
Close
,
Matthew Marshall aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Matthew Marshall in
Current site
Google Scholar
PubMed
Close
,
Yi Xiao aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Yi Xiao in
Current site
Google Scholar
PubMed
Close
, and
Dean Sgarbossa aAustralian Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Dean Sgarbossa in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Australian Bureau of Meteorology recently upgraded its convection-allowing numerical weather prediction system, known as the Australian Community Climate and Earth System Simulator (ACCESS-C). ACCESS-C includes seven domains covering major population centers, nested inside the Bureau’s global NWP system. The upgrade included the introduction of data assimilation, with hourly cycling 4D-Var. With a much newer version of the Unified Model to provide the forecast, a range of storm attribute diagnostics to improve forecasting of severe weather events could be introduced. This paper details the configuration of the new version of ACCESS-C. Some verification compared with its predecessor (a downscaling system of comparable resolution) is presented. Of greater note is an exploration of the differences in the model characteristics between the new and old systems, which will affect how users interpret the outputs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan Rennie, susan.rennie@bom.gov.au

Abstract

The Australian Bureau of Meteorology recently upgraded its convection-allowing numerical weather prediction system, known as the Australian Community Climate and Earth System Simulator (ACCESS-C). ACCESS-C includes seven domains covering major population centers, nested inside the Bureau’s global NWP system. The upgrade included the introduction of data assimilation, with hourly cycling 4D-Var. With a much newer version of the Unified Model to provide the forecast, a range of storm attribute diagnostics to improve forecasting of severe weather events could be introduced. This paper details the configuration of the new version of ACCESS-C. Some verification compared with its predecessor (a downscaling system of comparable resolution) is presented. Of greater note is an exploration of the differences in the model characteristics between the new and old systems, which will affect how users interpret the outputs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Susan Rennie, susan.rennie@bom.gov.au
Save
  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys.: Adv. Res. Appl., 17, 173265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., Z. Li, D. Simonin, and J. F. Caron, 2016: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012. Quart. J. Roy. Meteor. Soc., 142, 472487, https://doi.org/10.1002/qj.2665.

    • Search Google Scholar
    • Export Citation
  • Beggs, H., A. Zhong, G. Warren, O. Alves, G. Brassington, and T. Pugh, 2011: RAMSSA—An operational high-resolution multi-sensor sea surface temperature analysis over the Australian region. Aust. Meteor. Oceanogr. J., 61, 122, https://doi.org/10.22499/2.6101.001.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677699, https://doi.org/10.5194/gmd-4-677-2011.

    • Search Google Scholar
    • Export Citation
  • Brown, A., S. Milton, M. Cullen, B. Golding, J. Mitchell, and A. Shelly, 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 18651877, https://doi.org/10.1175/BAMS-D-12-00018.1.

    • Search Google Scholar
    • Export Citation
  • Bureau National Operations Centre, 2016: APS2 upgrade to the ACCESS-R numerical weather prediction system. BNOC Operations Bull. 107, 29 pp., http://www.bom.gov.au/australia/charts/bulletins/apob107-external.pdf.

  • Bureau National Operations Centre, 2018: APS2 upgrade of the ACCESS-C numerical weather prediction system. NOC Operations Bull. 114, 33 pp., http://www.bom.gov.au/australia/charts/bulletins/BNOC_Operations_Bulletin_114.pdf.

  • Bush, M., and Coauthors, 2020: The first Met Office Unified Model–JULES regional atmosphere and land configuration, RAL1. Geosci. Model Dev., 13, 19992029, https://doi.org/10.5194/gmd-13-1999-2020.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and N. A. Phillips, 1953: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteor., 10, 7199, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and R. Potts, 2019: Sensitivity and tuning of the visibility scheme employed in the ACCESS NWP models. Bureau Research Rep. 035, 95 pp., http://www.bom.gov.au/research/publications/researchreports/BRR-035.pdf.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2006: Tornadoes in environments with small helicity and/or high LCL heights. Wea. Forecasting, 21, 579594, https://doi.org/10.1175/WAF928.1.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Search Google Scholar
    • Export Citation
  • Gustafsson, N., and Coauthors, 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Quart. J. Roy. Meteor. Soc., 144, 12181256, https://doi.org/10.1002/qj.3179.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2019: SINGV—The convective-scale numerical weather prediction system for Singapore. ASEAN J. Sci. Technol. Dev., 36, 8190, https://doi.org/10.29037/ajstd.581.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG Late Precipitation L3 Half Hourly 0.1 degree × 0.1 degree V06. Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed July–November 2019, https://doi.org/10.5067/GPM/IMERG/3B-HH-L/06.

  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277, https://doi.org/10.1017/S1350482797000522.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, https://doi.org/10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, https://doi.org/10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., and Coauthors, 2019: Using global navigation satellite system data for real-time moisture analysis and forecasting over the Australian region I. The system. J. South. Hemisphere Earth Syst. Sci., 69, 161171, https://doi.org/10.1071/ES19009.

    • Search Google Scholar
    • Export Citation
  • Lee, J. C. K., and X. Huang, 2020: Background error statistics in the tropics: Structures and impact in a convective‐scale numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 146, 21542173, https://doi.org/10.1002/qj.3785.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., G. Dietachmayer, P. Steinle, W. Lu, L. Rikus, and D. Sgarbossa, 2018: Diagnose wind gusts from high resolution NWP modelling over mountainous regions. Bureau Research Rep. 029, 24 pp., http://www.bom.gov.au/research/publications/researchreports/BRR-029.pdf.

    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 52012 526, https://doi.org/10.1029/2019GL084099.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, https://doi.org/10.1175/2008WAF2222152.1.

    • Search Google Scholar
    • Export Citation
  • Met Office, 2020: Unified model partnership. Accessed 28 September 2020, https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership.

  • National Meteorological and Oceanographic Centre, 2013: APS1 upgrade of the ACCESS-C Numerical Weather Prediction system. NMOC Operations Bull. 99, 22 pp., http://www.bom.gov.au/australia/charts/bulletins/apob99.pdf.

  • National Operations Centre, 2019: APS3 upgrade of the ACCESS-G/GE Numerical Weather Prediction system. NMOC Operations Bull. 125, 68 pp., http://www.bom.gov.au/australia/charts/bulletins/opsbull_G3GE3_external_v3.pdf.

  • National Operations Centre, 2022: APS3 upgrade of the ACCESS-C Numerical Weather Prediction System. NMOC Operations Bull., in press.

  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Puri, K., and Coauthors, 2013: Implementation of the initial ACCESS numerical weather prediction system. Aust. Meteor. Oceanogr. J., 63, 265284, https://doi.org/10.22499/2.6302.001.

    • Search Google Scholar
    • Export Citation
  • Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 133, 347362, https://doi.org/10.1002/qj.32.

    • Search Google Scholar
    • Export Citation
  • Rennie, S., P. Steinle, A. Seed, M. Curtis, and Y. Xiao, 2018: Assessment of Doppler radar radial wind observation quality from different echo sources for assimilation during the Sydney 2014 forecast demonstration project. J. Atmos. Oceanic Technol., 35, 16051620, https://doi.org/10.1175/JTECH-D-17-0183.1.

    • Search Google Scholar
    • Export Citation
  • Rennie, S., L. Rikus, N. Eizenberg, P. Steinle, and M. Krysta, 2020: Impact of Doppler radar wind observations on Australian high-resolution numerical weather prediction. Wea. Forecasting, 35, 309324, https://doi.org/10.1175/WAF-D-19-0100.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., I. Jirak, A. Clark, S. Weiss, and J. Kain, 2019: Postprocessing and visualization techniques for convection-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 12451258, https://doi.org/10.1175/BAMS-D-18-0041.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., 2008: Assessing the spatial and temporal variation in the skill of precipitation forecasts from an NWP model. Meteor. Appl., 15, 163169, https://doi.org/10.1002/met.57.

    • Search Google Scholar
    • Export Citation
  • Roberts, N., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roff, G., and Coauthors, 2022: APS2-ACCESS-C2: The first Australian operational NWP convection permitting model. J. South. Hemisphere Earth Syst. Sci., 72, 118, https://doi.org/10.1071/ES21013.

    • Search Google Scholar
    • Export Citation
  • Seed, A., E. Duthie, and S. Chumchean, 2007: Rainfields: The Australian Bureau of Meteorology System for quantitative precipitation estimation. 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., P6B.8, https://ams.confex.com/ams/33Radar/techprogram/paper_123340.htm.

    • Search Google Scholar
    • Export Citation
  • Seed, A., A. Bell, P. Steinle, and S. Rennie, 2019: Forecasting Demonstration Project— Sydney 2014. Australian Bureau of Meteorology, Bureau Research Rep. 046, 117 pp, http://www.bom.gov.au/research/publications/researchreports/BRR-046.pdf.

  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460, https://doi.org/10.1002/qj.49711649210.

    • Search Google Scholar
    • Export Citation
  • Sobash, R., J. Kain, D. Bright, A. Dean, M. Coniglio, and S. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., R. J. Hogan, K. E. Hanley, J. C. Nicol, H. W. Lean, R. S. Plant, P. A. Clark, and C. E. Halliwell, 2014: The three-dimensional morphology of simulated and observed convective storms over Southern England. Mon. Wea. Rev., 142, 32643283, https://doi.org/10.1175/MWR-D-13-00372.1.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. W. Lean, and J. Bornemann, 2013: The benefits of the Met Office variable resolution NWP model for forecasting convection. Meteor. Appl., 20, 417426, https://doi.org/10.1002/met.1300.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. International Geophysics Series, Vol. 100, Academic Press, 704 pp.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK Meteorological Office unified model. Quart. J. Roy. Meteor. Soc., 125, 16071636, https://doi.org/10.1002/qj.49712555707.

    • Search Google Scholar
    • Export Citation
  • Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 20932107, https://doi.org/10.1002/qj.333.

    • Search Google Scholar
    • Export Citation
  • Wlasak, M. A., and M. J. P. Cullen, 2014: Modelling static 3-D spatial background error covariances—The effect of vertical and horizontal transform order. Adv. Sci. Res., 11, 6367, https://doi.org/10.5194/asr-11-63-2014.

    • Search Google Scholar
    • Export Citation
  • Wood, N., and Coauthors, 2014: An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quart. J. Roy. Meteor. Soc., 140, 15051520, https://doi.org/10.1002/qj.2235.

    • Search Google Scholar
    • Export Citation
  • Zerroukat, M., and B. J. Shipway, 2017: ZLF (Zero Lateral Flux): A simple mass conservation method for semi‐Lagrangian‐based limited‐area models. Quart. J. Roy. Meteor. Soc., 143, 25782584, https://doi.org/10.1002/qj.3108.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 608 0 0
Full Text Views 758 403 36
PDF Downloads 740 365 26