Prediction Skill of GEFSv12 for Southwest Summer Monsoon Rainfall and Associated Extreme Rainfall Events on Extended Range Scale over India

M. M. Nageswararao aCPAESS, University Corporation for Atmospheric Research, Boulder, Colorado
bNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by M. M. Nageswararao in
Current site
Google Scholar
PubMed
Close
,
Yuejian Zhu bNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
, and
Vijay Tallapragada bNOAA/NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Vijay Tallapragada in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Indian summer monsoon rainfall (ISMR) from June to September (JJAS) contributes 80% of the total annual rainfall in India and controls the agricultural productivity and economy of the country. Extreme rainfall (ER) events are responsible for floods that cause widespread destruction of infrastructure, economic damage, and loss of life. A forecast of the ISMR and associated ER events on an extended range (beyond the conventional one-week lead time) is vital for the agronomic economy of the country. In September 2020, NOAA/NCEP implemented Global Ensemble Forecast System, version 12 (GEFSv12) for various risk management applications. It has generated consistent reanalysis and reforecast data for the period 2000–19. In the present study, the Raw-GEFSv12 with day-1–16 lead-time rainfall forecasts are calibrated using the quantile (QQ) mapping technique against Indian Monsoon Data Assimilation and Analysis (IMDAA) for further improvement. The present study evaluated the prediction skill of Raw and QQ-GEFSv12 for ISMR and ER events over India by using standard skill metrics. The results suggest that the ISMR patterns from Raw and QQ-GEFSv12 with (lead) day 1–16 are similar to IMDAA. However, Raw-GEFSv12 has a dry bias in most parts of prominent rainfall regions. The low- to medium-intensity rainfall events from Raw-GEFSv12 is remarkably higher than the IMDAA, while high- to very-high-intensity rainfall events from Raw-GEFSv12 are lower than IMDAA. The prediction skill of Raw-GEFSv12 in depicting ISMR and associated ER events decreased with lead time, while the prediction skill is almost equal for all lead times with marginal improvement after calibration.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuejian Zhu, Yuejian.Zhu@noaa.gov

Abstract

Indian summer monsoon rainfall (ISMR) from June to September (JJAS) contributes 80% of the total annual rainfall in India and controls the agricultural productivity and economy of the country. Extreme rainfall (ER) events are responsible for floods that cause widespread destruction of infrastructure, economic damage, and loss of life. A forecast of the ISMR and associated ER events on an extended range (beyond the conventional one-week lead time) is vital for the agronomic economy of the country. In September 2020, NOAA/NCEP implemented Global Ensemble Forecast System, version 12 (GEFSv12) for various risk management applications. It has generated consistent reanalysis and reforecast data for the period 2000–19. In the present study, the Raw-GEFSv12 with day-1–16 lead-time rainfall forecasts are calibrated using the quantile (QQ) mapping technique against Indian Monsoon Data Assimilation and Analysis (IMDAA) for further improvement. The present study evaluated the prediction skill of Raw and QQ-GEFSv12 for ISMR and ER events over India by using standard skill metrics. The results suggest that the ISMR patterns from Raw and QQ-GEFSv12 with (lead) day 1–16 are similar to IMDAA. However, Raw-GEFSv12 has a dry bias in most parts of prominent rainfall regions. The low- to medium-intensity rainfall events from Raw-GEFSv12 is remarkably higher than the IMDAA, while high- to very-high-intensity rainfall events from Raw-GEFSv12 are lower than IMDAA. The prediction skill of Raw-GEFSv12 in depicting ISMR and associated ER events decreased with lead time, while the prediction skill is almost equal for all lead times with marginal improvement after calibration.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuejian Zhu, Yuejian.Zhu@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 1.24 MB)
Save
  • Abhik, S., R. P. M. Krishna, M. Mahakur, M. Ganai, P. Mukhopadhyay, and J. Dudhia, 2017: Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. J. Adv. Model. Earth Syst., 9, 10021029, https://doi.org/10.1002/2016MS000819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhilash, S., A. K. Sahai, S. Pattnaik, B. N. Goswami, and A. Kumar, 2013a: Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP climate forecast system. Int. J. Climatol., 34, 98113, https://doi.org/10.1002/joc.3668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhilash, S., A. K. Sahai, N. Borah, R. Chattopadhyay, S. Joseph, S. Sharmila, S. De, and B. N. Goswami, 2013b: Does bias correction in the forecasted SST improve the extended range prediction skill of active-break spells of Indian summer monsoon rainfall? Atmos. Sci. Lett., 15, 114119, https://doi.org/10.1002/asl2.477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abhilash, S., A. K. Sahai, N. Borah, R. Chattopadhyay, S. Joseph, S. Sharmila, S. De, and B. N. Goswami, 2014: Prediction and monitoring of monsoon intra-seasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2. Climate Dyn., 42, 28012815, https://doi.org/10.1007/s00382-013-2045-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adhikari, P., Y. Hong, K. R. Dougla, D. B. Kirschbaum, J. Gourley, R. Adler, and G. R. Brakenridge, 2010: A digitized global flood inventory (1998–2008): Compilation and preliminary results. Nat. Hazards, 55, 405422, https://doi.org/10.1007/s11069-010-9537-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahasan, M. N., M. A. M. Chowdhury, and D. A. Quadir, 2013: Simulation of high impact rainfall events over southeastern hilly region of Bangladesh using MM5 model. Int. J. Atmos. Sci., 2013, 657108, https://doi.org/10.1155/2013/657108

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alpert, J. C., M. Kanamitsu, P. M. Caplan, J. G. Sela, G. H. White, and E. Kalnay, 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range forecast model. Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726733.

    • Search Google Scholar
    • Export Citation
  • Ashrit, R., and Coauthors, 2020: IMDAA regional reanalysis: Performance evaluation during Indian summer monsoon season. J. Geophys. Res. Atmos., 125, e2019JD030973, https://doi.org/10.1029/2019JD030973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barde, V., M. M. Nageswararao, U. C. Mohanty, R. K. Panda, and M. Ramadas, 2020: Characteristics of southwest summer monsoon rainfall events over East India. Theor. Appl. Climatol., 141, 15111528, https://doi.org/10.1007/s00704-020-03251-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, N., B. Bookhagen, H. M. J. Barbosa, N. Marwan, J. Kurths, and J. A. Marengo, 2014: Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun., 5, 5199, https://doi.org/10.1038/ncomms6199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, https://doi.org/10.1002/qj.49712556006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chun, H. Y., and J. J. Baik, 1998: Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55, 32993310, https://doi.org/10.1175/1520-0469(1998)055<3299:MFBTII>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady‐Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deb, S. K., C. M. Kishtawal, V. S. Bongirwar, and P. K. Pal, 2010: The simulation of heavy rainfall episode over Mumbai: Impact of horizontal resolutions and cumulus parameterization schemes. Nat. Hazards, 52, 117142, https://doi.org/10.1007/s11069-009-9361-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dube, A., R. Ashrit, A. Ashish, K. Sharma, G. R. Iyengar, E. N. Rajagopal, and S. Basu, 2014: Forecasting the heavy rainfall during Himalayan flooding—June 2013. Wea. Climate Extremes, 4, 2234, https://doi.org/10.1016/j.wace.2014.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, N., J. Matsumoto, and T. Lwin, 2009: Trends in precipitation extremes over Southeast Asia. SOLA, 5, 168171, https://doi.org/10.2151/sola.2009-043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epstein, E. S., 1969: A scoring system for probability forecasts of ranked categories. J. Appl. Meteor., 8, 985987, https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, P. A., and S. Gadgil, 2006: Intense rainfall events over the west coast of India. Meteor. Atmos. Phys., 94, 2742, https://doi.org/10.1007/s00703-005-0167-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., 2000: Monsoon-ocean coupling. Curr. Sci., 78, 309323.

  • Gadgil, S., 2003: The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci., 31, 429467, https://doi.org/10.1146/annurev.earth.31.100901.141251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganai, M., P. Mukhopadhyay, R. P. M. Krishna, and M. Mahakur, 2015: The impact of revised, simplified Arakawa–Schubert convection parameterization scheme in CFSv2 on the simulation of the Indian summer monsoon. Climate Dyn., 45, 881902, https://doi.org/10.1007/s00382-014-2320-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganai, M., R. P. M. Krishna, P. Mukhopadhyay, and M. Mahakur, 2016: The impact of revised, simplified Arakawa–Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using CFSv2. J. Geophys. Res. Atmos., 121, 93019323, https://doi.org/10.1002/2016JD025393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganai, M., P. Mukhopadhyay, R. P. M. Krishna, S. Abhik, and M. Halder, 2019: Revised cloud and convective parameterization in CFSv2 improve the underlying processes for northward propagation of intraseasonal oscillations as proposed by the observation-based study. Climate Dyn., 53, 27932805, https://doi.org/10.1007/s00382-019-04657-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • George, P. A., 1956: Effects of offshore vortices on rainfall along the west coast of India. Indian J. Meteor. Geophys., 7, 225240.

  • Ghosh, S., V. Luniya, and A. Gupta, 2009: Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos. Sci. Lett., 10, 285290, https://doi.org/10.1002/asl.235.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., and S. Chakravorty, 2017: Dynamics of the Indian summer monsoon climate. Oxford Research Encyclopedia of Climate Science, Oxford University Press, https://doi.org/10.1093/acrefore/9780190228620.013.613.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. Xavier, 2006: Increasing trend of extreme rain events over India in a warming environment. Science, 314, 14421445, https://doi.org/10.1126/science.1132027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, H., and Coauthors, 2022: GEFSv12 reforecast dataset for supporting subseasonal and hydrometeorological applications. Mon. Wea. Rev., 150,647665, https://doi.org/10.1175/MWR-D-21-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guhathakurta, P., O. P. Sreejith, and P. A. Menon, 2011: Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci., 120, 359373, https://doi.org/10.1007/s12040-011-0082-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and J. S. Whitaker, 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, https://doi.org/10.1175/MWR3237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2022: The reanalysis for the Global Ensemble Forecast System, version 12. Mon. Wea. Rev., 150, 5979, https://doi.org/10.1175/MWR-D-21-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlet, A. F., D. Huppert, and D. P. Lettenmaier, 2002: Economic value of long-lead streamflow forecasts for Columbia River hydropower. J. Water Resour. Plan. Manage., 128, 91101, https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(91).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., M. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazra, A., H. S. Chaudhari, S. K. Saha, and S. Pokhrel, 2017: Effect of cloud microphysics on Indian summer monsoon precipitating clouds: A coupled climate modeling study. J. Geophys. Res. Atmos., 122, 37863805, https://doi.org/10.1002/2016JD026106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., T. J. Crowley, M. Allen, W. T. Hyde, H. N. Pollack, J. Smerdon, and E. Zorita, 2007: Detection of human influence on a new, validated 1500-year temperature reconstruction. J. Climate, 20, 650666, https://doi.org/10.1175/JCLI4011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, L., and Y. L. Luo, 2017: Evaluation of quantitative precipitation forecasts by TIGGE ensembles for South China during the pre-summer rainy season. J. Geophys. Res. Atmos., 122, 84948516, https://doi.org/10.1002/2017JD026512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Indira Rani, S. I., T. Arulalan, J. P. George, E. N. Rajagopal, R. Renshaw, A. Maycock, D. M. Barker, and M. Rajeevan, 2021: IMDAA: High-resolution satellite-era reanalysis for the Indian monsoon region. J. Climate, 34, 51095133, https://doi.org/10.1175/JCLI-D-20-0412.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, M., and Coauthors, 2017: Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast. Atmos. Chem. Phys., 17, 13 96713 982, https://doi.org/10.5194/acp-17-13967-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonkman, S. N., 2005: Global perspectives on loss of human life caused by floods. Nat. Hazards, 34, 151175, https://doi.org/10.1007/s11069-004-8891-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kar, S. C., A. Hovsepyan, and C. K. Park, 2006: Economic values of the APCN multi-model ensemble categorical seasonal predictions. Meteor. Appl., 13, 267277, https://doi.org/10.1017/S1350482706002271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keller, S., and A. Atzl, 2014: Mapping natural hazard impacts on road infrastructure—The extreme precipitation in Baden-Württemberg, Germany, June 2013. Int. J. Disaster Risk Sci., 5, 227241, https://doi.org/10.1007/s13753-014-0026-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishna, R. P. M., S. A. Rao, A. Srivastava, H. P. Kottu, M. Pradhan, P. Pillai, R. A. Dandi, and C. T. Sabeerali, 2019: Impact of convective parameterization on the seasonal prediction skill of Indian summer monsoon. Climate Dyn., 53, 62276243, https://doi.org/10.1007/s00382-019-04921-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, C. K. B., U. Lall, and H.-H. Kwon, 2009: Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Climate, 22, 47374746, https://doi.org/10.1175/2009JCLI2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., A. Chakraborty, and A. K. Mishra, 2010: Improving multimodel forecasts of the vertical distribution of heating using the TRMM profiles. J. Climate, 23, 10791094, https://doi.org/10.1175/2009JCLI2878.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., A. D. Choudhury, R. Chattopadhyay, and M. Mujumdar, 2011: Monsoon Simulation. IMD Monogr., No. 2, India Meteorological Department, 189–232.

    • Search Google Scholar
    • Export Citation
  • Li, W., H. Guan, Y. Zhu, X. Zhou, B. Fu, D. Hou, E. Sinsky, and X. Xue, 2019: Prediction skill of the MJO, NAO and PNA in the NCEP FV3-GEFS 35-day experiments. 44th NOAA Annual Climate Diagnostics and Prediction Workshop, Durham, NC, NOAA/National Weather Service, 4 pp., https://www.nws.noaa.gov/ost/climate/STIP/44CDPW/44cdpw-WLi.pdf.

    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 22932307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, S.-J., and R. B. Rood, 1997: An explicit flux-form semi-Lagrangian shallow-water model on the sphere. Quart. J. Roy. Meteor. Soc., 123, 24772498, https://doi.org/10.1002/qj.49712354416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Litta, A. J., B. Chakrapani, and V. Mohankumar, 2007: Mesoscale simulation of an extreme rainfall event over Mumbai, India, using a high-resolution MM5 model. Meteor. Appl., 14, 291295, https://doi.org/10.1002/met.31.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahmood, S., J. Davie, P. Jermey, R. Renshaw, J. P. George, E. N. Rajagopal, and S. I. Rani, 2018: Indian monsoon data assimilation and analysis regional reanalysis: Configuration and performance. Atmos. Sci. Lett., 19, e808, https://doi.org/10.1002/asl.808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 2004: On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev., 132, 18911895, https://doi.org/10.1175/1520-0493(2004)132<1891:OUCAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating characteristics, and relative operating levels. Wea. Forecasting, 14, 713725, https://doi.org/10.1175/1520-0434(1999)014<0713:CPROCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirza, M. M. Q., 2011: Climate change, flooding in South Asia and implications. Reg. Environ. Change, 11(S1), 95107, https://doi.org/10.1007/s10113-010-0184-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukherjee, A. K., 1980: Dimension of an offshore vortex in East Arabian Sea as deduced from observations during MONEX 1979: FGGE Operations Report. Vol. 9A, World Meteorological Organization, 176–184.

    • Search Google Scholar
    • Export Citation
  • Mukherjee, A. K., M. K. Rao, and K. C. Saha, 1978: Vortices embedded in the trough of low pressure off Maharashtra-Goa coasts during the month of July. Mausam, 29, 6165, https://doi.org/10.54302/mausam.v29i1.2859.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukhopadhyay, P., and Coauthors, 2019: Performance of a very high-resolution global forecast system model (GFST1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons. J. Earth Syst. Sci., 128, 155, https://doi.org/10.1007/s12040-019-1186-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nageswararao, M. M., U. C. Mohanty, S. S. V. S. Ramakrishna, A. Nair, and S. K. Prasada, 2016: Characteristics of winter precipitation over Northwest India using high-resolution gridded dataset (1901–2013). Global Planet. Change, 147, 6785, https://doi.org/10.1016/j.gloplacha.2016.10.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nageswararao, M. M., M. C. Sannan, and U. C. Mohanty, 2019a: Characteristics of various rainfall events over South Peninsular India during northeast monsoon using high-resolution gridded dataset (1901–2016). Theor. Appl. Climatol., 137, 25732593, https://doi.org/10.1007/s00704-018-02755-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nageswararao, M. M., P. Sinha, U. C. Mohanty, R. K. Panda, and G. P. Dash, 2019b: Evaluation of district-level rainfall characteristics over Odisha using high-resolution gridded dataset (1901–2013). SN Appl. Sci., 1, 1211, https://doi.org/10.1007/s42452-019-1234-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nayak, M. A., and S. Ghosh, 2013: Prediction of extreme rainfall event using weather pattern recognition and support vector machine classifier. Theor. Appl. Climatol., 114, 583603, https://doi.org/10.1007/s00704-013-0867-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, https://doi.org/10.1175/BAMS-85-6-853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp., https://www.ecmwf.int/node/11577.

    • Search Google Scholar
    • Export Citation
  • Pattanaik, D. R., 2007: Variability of convective activity over the north Indian Ocean and its impacts on monsoon rainfall over India. Pure Appl. Geophys., 164, 15271545, https://doi.org/10.1007/s00024-007-0243-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piani, C., J. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187192, https://doi.org/10.1007/s00704-009-0134-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pokhrel, S., A. Hazra, H. S. Chaudhari, S. K. Saha, F. Paulose, S. Krishna, R. Phani, and S. A. Rao, 2018: Hindcast skill improvement in Climate Forecast System (CFSv2) using modified cloud scheme. Int. J. Climatol., 38, 29943012, https://doi.org/10.1002/joc.5478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., J. Bhate, and A. K. Jaswal, 2008: Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, https://doi.org/10.1029/2008GL035143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, D. A., and Coauthors, 2016: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution. J. Geophys. Res. Atmos., 121, 22052221, https://doi.org/10.1002/2015JD024629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, S. A., and Coauthors, 2019: Monsoon mission: A targeted activity to improve monsoon prediction across scales. Bull. Amer. Meteor. Soc., 100, 25092532, https://doi.org/10.1175/BAMS-D-17-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, Y. P., 1976: Southwest monsoon: Synoptic meteorology. IMD Meteor. Monogr., No. 1/1976, India Meteorological Department, 367 pp.

  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenberg, E. A., P. W. Keys, D. B. Booth, D. Hartley, J. Burkey, A. C. Steinemann, and D. P. Lettenmaier, 2010: Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Climatic Change, 102, 319349, https://doi.org/10.1007/s10584-010-9847-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O. Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 700, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., F. N. Tubiello, R. Goldberg, E. Mills, and J. Bloomfield, 2002: Increased crop damage in the US from excess precipitation under climate change. Global Environ. Change, 12, 197202, https://doi.org/10.1016/S0959-3780(02)00008-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Routray, A., U. C. Mohanty, N. Dev, S. R. H. Rizvi, and K. K. Osuri, 2010: Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteor. Atmos. Phys., 106, 107125, https://doi.org/10.1007/s00703-009-0054-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagar, S. K., M. Rajeevan, S. Vijaya Bhaskara Rao, and A. K. Mitrac, 2017: Prediction skill of rainstorm events over India in the TIGGE weather prediction models. Atmos. Res., 198, 194204, https://doi.org/10.1016/j.atmosres.2017.08.017.

    • Crossref
    • Search Google Scholar