Abstract
The occurrence and properties of hail smaller than severe thresholds (diameter < 25 mm) are poorly understood. Prior climatological hail studies have predominantly focused on large or severe hail (diameter at least 25 mm or 1 in.). Through use of data from the Meteorological Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative Rain, Hail and Snow Network the occurrence and characteristics of both severe and sub-severe hail are explored. Spatial distributions of days with the different classes of hail are developed on an annual and seasonal basis for the period 2013–20. Annually, there are several hail-day maxima that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about 28 days yr−1). A secondary maximum exists over the Colorado Front Range (about 26 days yr−1), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24 days yr−1 with hail), and a fourth area is centered over the corners of southwest North Carolina, northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are driven by sub-severe hail. While similar patterns of severe hail have been previously documented, this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis of the hail size distribution suggests that to capture the overall hail risk, each of the datasets provide a complimentary data source.
© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).