Sub-Severe and Severe Hail

Kimberly L. Elmore aCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Kimberly L. Elmore in
Current site
Google Scholar
PubMed
Close
,
John T. Allen cDepartment of Earth and Atmospheric Sciences, Central Michigan University, Mt. Pleasant, Michigan

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
, and
Alan E. Gerard bNOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alan E. Gerard in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The occurrence and properties of hail smaller than severe thresholds (diameter < 25 mm) are poorly understood. Prior climatological hail studies have predominantly focused on large or severe hail (diameter at least 25 mm or 1 in.). Through use of data from the Meteorological Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative Rain, Hail and Snow Network the occurrence and characteristics of both severe and sub-severe hail are explored. Spatial distributions of days with the different classes of hail are developed on an annual and seasonal basis for the period 2013–20. Annually, there are several hail-day maxima that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about 28 days yr−1). A secondary maximum exists over the Colorado Front Range (about 26 days yr−1), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24 days yr−1 with hail), and a fourth area is centered over the corners of southwest North Carolina, northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are driven by sub-severe hail. While similar patterns of severe hail have been previously documented, this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis of the hail size distribution suggests that to capture the overall hail risk, each of the datasets provide a complimentary data source.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kimberly L. Elmore, kim.elmore@noaa.gov

Abstract

The occurrence and properties of hail smaller than severe thresholds (diameter < 25 mm) are poorly understood. Prior climatological hail studies have predominantly focused on large or severe hail (diameter at least 25 mm or 1 in.). Through use of data from the Meteorological Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative Rain, Hail and Snow Network the occurrence and characteristics of both severe and sub-severe hail are explored. Spatial distributions of days with the different classes of hail are developed on an annual and seasonal basis for the period 2013–20. Annually, there are several hail-day maxima that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about 28 days yr−1). A secondary maximum exists over the Colorado Front Range (about 26 days yr−1), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24 days yr−1 with hail), and a fourth area is centered over the corners of southwest North Carolina, northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are driven by sub-severe hail. While similar patterns of severe hail have been previously documented, this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis of the hail size distribution suggests that to capture the overall hail risk, each of the datasets provide a complimentary data source.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kimberly L. Elmore, kim.elmore@noaa.gov

Supplementary Materials

    • Supplemental Materials (Zip 2.31 MB)
Save
  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10(3), https://ejssm.com/ojs/index.php/site/article/view/60.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., M. K. Tippett, Y. Kaheil, A. H. Sobel, C. Lepore, S. Nong, and A. Muehlbauer, 2017: An extreme value model for U.S. hail size. Mon. Wea. Rev., 145, 45014519, https://doi.org/10.1175/MWR-D-17-0119.1.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. Jurgen Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophys., 58, e2019RG000 665, https://doi.org/10.1029/2019RG000665.

    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and D. J. Cecil, 2019: Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteor. Climatol., 58, 18891904, https://doi.org/10.1175/JAMC-D-19-0042.1.

    • Search Google Scholar
    • Export Citation
  • Barras, H., A. Hering, A. Martynov, P.-A. Noti, U. Germann, and O. Martius, 2019: Experiences with >50,000 crowdsourced hail reports in Switzerland. Bull. Amer. Meteor. Soc., 100, 14291440, https://doi.org/10.1175/BAMS-D-18-0090.1.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargen, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6(7), https://ejssm.com/ojs/index.php/site/issue/view/32.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., and Coauthors, 2017: High-resolution hail observations: Implications for NWS warning operations. Wea. Forecasting, 32, 11011119, https://doi.org/10.1175/WAF-D-16-0203.1.

    • Search Google Scholar
    • Export Citation
  • Brimelow, J. C., W. R. Burrows, and J. M. Hanesiak, 2017: The changing hail threat over North America in response to anthropogenic climate change. Nat. Climate Change, 7, 516522, https://doi.org/10.1038/nclimate3321.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 7394, https://doi.org/10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., S. R. Fleegel, T. Grafenauer, C. J. Schultz, and P. N. Schumacher, 2020: Observations of hail–wind ratios from convective storm reports across the continental United States. Wea. Forecasting, 35, 635656, https://doi.org/10.1175/WAF-D-19-0136.1.

    • Search Google Scholar
    • Export Citation
  • Carr, D. B., A. R. Olsen, and D. White, 1992: Hexagon mosaic maps for display of univariate and bivariate geographical data. Cartogr. Geogr. Info. Syst., 19, 228236, https://doi.org/10.1559/152304092783721231.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, D., and S. A. Changnon, 1997: Surrogate data to estimate crop-hail loss. J. Appl. Meteor., 36, 12021210, https://doi.org/10.1175/1520-0450(1997)036<1202:SDTECH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, D., S. A. Changnon, and S. S. Changnon, 2001: A method for estimating crop losses from hail in uninsured periods and regions. J. Appl. Meteor. Climatol., 40, 8491, https://doi.org/10.1175/1520-0450(2001)040<0084:AMFECL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1971: Hailfall characteristics related to crop damage. J. Appl. Meteor., 10, 270274, https://doi.org/10.1175/1520-0450(1971)010<0270:HCRTCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1977a: The climatology of hail in North America. Hail: A Review of Hail Science and Hail Suppression, G. B. Foote and C. A. Knight, Eds., Springer, 107133.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1977b: The scales of hail. J. Appl. Meteor., 16, 626648, https://doi.org/10.1175/1520-0450(1977)016<0626:TSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1999: Data and approaches for determining hail risk in the contiguous United States. J. Appl. Meteor., 38, 17301739, https://doi.org/10.1175/1520-0450(1999)038<1730:DAAFDH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and D. Changnon, 2000: Long-term fluctuations in hail incidences in the United States. J. Climate, 13, 658664, https://doi.org/10.1175/1520-0442(2000)013<0658:LTFIHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., D. Changnon, and S. D. Hilberg, 2009: Hailstorms across the nation: An atlas about hail and its damages. ISWS Contract Report CR-2009-12. Tech. Rep., Illinois State Water Survey, http://hdl.handle.net/2142/15156.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., T. M. Smith, V. Lakshmanan, H. E. Brooks, and K. L. Ortega, 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, https://doi.org/10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scatterplots. J. Amer. Stat. Assoc., 74, 829836, https://doi.org/10.1080/01621459.1979.10481038.

    • Search Google Scholar
    • Export Citation
  • Cleveland, W. S., and S. J. Devlin, 1988: Locally weighted regression: An approach to regression analysis by local fitting. J. Amer. Stat. Assoc., 83, 596610, https://doi.org/10.1080/01621459.1988.10478639.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 28, Amer. Meteor. Soc., 126, https://doi.org/10.1175/0065-9401-28.50.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, https://doi.org/10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Z. Flamig, V. Lakshmanan, B. Kaney, V. Farmer, H. D. Reeves, and L. P. Rothfusz, 2014: mping: Crowd-sourcing weather reports for research. Bull. Amer. Meteor. Soc., 95, 13351342, https://doi.org/10.1175/BAMS-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., and Coauthors, 2019: CHAT: The Colorado Hail Accumulation from Thunderstorms Project. Bull. Amer. Meteor. Soc., 100, 459471, https://doi.org/10.1175/BAMS-D-16-0277.1.

    • Search Google Scholar
    • Export Citation
  • Gensini, V. A., A. M. Haberlie, and P. T. Marsh, 2020: Practically perfect hindcasts of severe convective storms. Bull. Amer. Meteor. Soc., 101, E1259E1278, https://doi.org/10.1175/BAMS-D-19-0321.1.

    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco, 2017: Using 3D laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98, 13411347, https://doi.org/10.1175/BAMS-D-15-00314.1.

    • Search Google Scholar
    • Export Citation
  • Grieser, J., and M. Hill, 2019: How to express hail intensity—Modeling the hailstone size distribution. J. Appl. Meteor. Climatol., 58, 23292345, https://doi.org/10.1175/JAMC-D-18-0334.1.

    • Search Google Scholar
    • Export Citation
  • Kacan, K. G., and Z. J. Lebo, 2019: Microphysical and dynamical effects of mixed-phase hydrometeors in convective storms using a bin microphysics model: Melting. Mon. Wea. Rev., 147, 44374460, https://doi.org/10.1175/MWR-D-18-0032.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, https://doi.org/10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. M. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Search Google Scholar
    • Export Citation
  • Li, M., Q. Zhang, and F. Zhang, 2016: Hail day frequency trends and associated atmospheric circulation patterns over China during 1960–2012. J. Climate, 29, 70277044, https://doi.org/10.1175/JCLI-D-15-0500.1.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K., M. A. Alexander, G. Thompson, J. J. Barsugli, and J. D. Scott, 2012: Changes in hail and flood risk in high-resolution simulations over Colorado’s mountains. Nat. Climate Change, 2, 125131, https://doi.org/10.1038/nclimate1344.

    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2017: A climatology of weakly forced and pulse thunderstorms in the Southeast United States. J. Appl. Meteor. Climatol., 56, 30173033, https://doi.org/10.1175/JAMC-D-17-0005.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hailfall diagnosis. Electron. J. Severe Storms Meteor, 13(1), https://ejssm.com/ojs/index.php/site/issue/view/66.

    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis And Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Search Google Scholar
    • Export Citation
  • Reges, H. W., N. Doesken, J. Turner, N. Newman, A. Bergantino, and Z. Schwalbe, 2016: CoCoRaHS: The evolution and accomplishments of a volunteer rain gauge network. Bull. Amer. Meteor. Soc., 97, 18311846, https://doi.org/10.1175/BAMS-D-14-00213.1.

    • Search Google Scholar
    • Export Citation
  • Sanchez, J., A. Merino, P. Melcón, E. García-Ortega, S. Fernández-González, C. Berthet, and J. Dessens, 2017: Are meteorological conditions favoring hail precipitation change in Southern Europe? Analysis of the period 1948–2015. Atmos. Res., 198, 110, https://doi.org/10.1016/j.atmosres.2017.08.003.

    • Search Google Scholar
    • Export Citation
  • Sander, J., J. Eichner, E. Faust, and M. Steuer, 2013: Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing. Wea. Climate Soc., 5, 317331, https://doi.org/10.1175/WCAS-D-12-00023.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., J. J. Levit, S. J. Weiss, and D. W. McCarthy, 2004: The frequency of large hail over the contiguous United States. 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 3.3, https://ams.confex.com/ams/84Annual/techprogram/paper_69834.htm.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1998: Density Estimation for Statistics and Data Analysis. Routledge, 176 pp.

  • Tang, B. H., V. A. Gensini, and C. R. Homeyer, 2019: Trends in United States large hail environments and observations. npj Climate Atmos. Sci., 2, 45, https://doi.org/10.1038/s41612-019-0103-7.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, P. Groenemeijer, R. Edwards, H. E. Brooks, V. Chmielewski, and S.-E. Enno, 2020: Severe convective storms across Europe and the United States. Part I: Climatology of lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 23910 261, https://doi.org/10.1175/JCLI-D-20-0345.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., K. A. Hoogewind, and S. Lasher-Trapp, 2019: Future changes in hail occurrence in the United States determined through convection-permitting dynamical downscaling. J. Climate, 32, 54935509, https://doi.org/10.1175/JCLI-D-18-0740.1.

    • Search Google Scholar
    • Export Citation
  • Van Den Heever, S. C., and W. R. Cotton, 2004: The impact of hail size on simulated supercell storms. J. Atmos. Sci., 61, 15961609, https://doi.org/10.1175/1520-0469(2004)061<1596:TIOHSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed severe and significant hail with comparisons to Storm Data hail reports. Wea. Forecasting, 36, 645659, https://doi.org/10.1175/WAF-D-20-0158.1.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., and J. W. Glendening, 1988: Observations and mixed-layer modeling of a terrain-induced mesoscale gyre: The Denver cyclone. Mon. Wea. Rev., 116, 15991622, https://doi.org/10.1175/1520-0493(1988)116<1599:OAMLMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. D. W. Mitchell, J. Johnson, and K. W. Thomas, 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 857 239 0
Full Text Views 331 115 28
PDF Downloads 389 132 29