Predicting Rapid Intensification in North Atlantic and Eastern North Pacific Tropical Cyclones Using a Convolutional Neural Network

Sarah M. Griffin aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Sarah M. Griffin in
Current site
Google Scholar
PubMed
Close
,
Anthony Wimmers aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Anthony Wimmers in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Velden aCooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study develops a probabilistic model based on a convolutional neural network to predict rapid intensification (RI) in both North Atlantic and eastern North Pacific tropical cyclones (TCs). Coined “I-RI,” an advantage of using a convolutional neural network to predict RI is that it is designed to learn from spatial fields, like two-dimensional satellite imagery, as well as scalar features. The resulting model RI probability output is validated against two operational RI guidances—an empirical and a deterministic method—to assess skill at predicting RI over 12-, 24-, 36-, 48-, and 72-h lead times. Results indicate that in North Atlantic TCs, AI-RI is more skillful at predicting RI over 12- and 24-h lead times compared to both operational RI guidances. In eastern North Pacific TCs, AI-RI is more skillful than the empirical operational RI guidance at most RI thresholds, but less skillful than the deterministic RI guidance at all thresholds. For TCs north of 15°N, where the deterministic skill was lower, AI-RI was more skillful than the deterministic operational guidance for over half of the RI thresholds. It is also found that AI-RI struggles to reach the higher RI probabilities produced by both of the operational RI guidances in both basins. This work demonstrates that the two-dimensional structures within the satellite imagery of TCs and the evolution of these structures identified using the difference in satellite images, captured by a convolutional neural network, yield better 12–24-h indicators of RI than existing scalar assessments of satellite brightness temperature.

Significance Statement

The purpose of this study is to develop a method to predict tropical cyclone rapid intensification using artificial intelligence. The developed model uses a convolutional neural network, which can identify features in satellite imagery that are indicative of rapid intensification. The results suggest that, compared with current operational rapid intensification models, a convolutional neural network approach is generally more skillful at predicting rapid intensification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Griffin, sarah.griffin@ssec.wisc.edu

Abstract

This study develops a probabilistic model based on a convolutional neural network to predict rapid intensification (RI) in both North Atlantic and eastern North Pacific tropical cyclones (TCs). Coined “I-RI,” an advantage of using a convolutional neural network to predict RI is that it is designed to learn from spatial fields, like two-dimensional satellite imagery, as well as scalar features. The resulting model RI probability output is validated against two operational RI guidances—an empirical and a deterministic method—to assess skill at predicting RI over 12-, 24-, 36-, 48-, and 72-h lead times. Results indicate that in North Atlantic TCs, AI-RI is more skillful at predicting RI over 12- and 24-h lead times compared to both operational RI guidances. In eastern North Pacific TCs, AI-RI is more skillful than the empirical operational RI guidance at most RI thresholds, but less skillful than the deterministic RI guidance at all thresholds. For TCs north of 15°N, where the deterministic skill was lower, AI-RI was more skillful than the deterministic operational guidance for over half of the RI thresholds. It is also found that AI-RI struggles to reach the higher RI probabilities produced by both of the operational RI guidances in both basins. This work demonstrates that the two-dimensional structures within the satellite imagery of TCs and the evolution of these structures identified using the difference in satellite images, captured by a convolutional neural network, yield better 12–24-h indicators of RI than existing scalar assessments of satellite brightness temperature.

Significance Statement

The purpose of this study is to develop a method to predict tropical cyclone rapid intensification using artificial intelligence. The developed model uses a convolutional neural network, which can identify features in satellite imagery that are indicative of rapid intensification. The results suggest that, compared with current operational rapid intensification models, a convolutional neural network approach is generally more skillful at predicting rapid intensification.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah M. Griffin, sarah.griffin@ssec.wisc.edu
Save
  • Adler, R. F., and E. B. Rodgers, 1977: Satellite-observed latent heat release in a tropical cyclone. Mon. Wea. Rev., 105, 956963, https://doi.org/10.1175/1520-0493(1977)105<0956:SOLHRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107, 4792, https://doi.org/10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and J. L. Franklin, 2014: 2013 National Hurricane Center verification report. NHC, 84 pp., http://www.nhc.noaa.gov/verification/pdfs/Verification_2013.pdf.

  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, https://doi.org/10.1175/WAF-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chen, B., B. Chen, H. Lin, and R. L. Elsberry, 2019: Estimating tropical cyclone intensity by satellite imagery utilizing convolutional neural networks. Wea. Forecasting, 34, 447465, https://doi.org/10.1175/WAF-D-18-0136.1.

    • Search Google Scholar
    • Export Citation
  • Chollet, F., 2018: Deep Learning with Python. Manning Publications Co., 361 pp.

  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Operational forecasting of tropical cyclone rapid intensification at the National Hurricane Center. Atmosphere, 12, 683, https://doi.org/10.3390/atmos12060683.

    • Search Google Scholar
    • Export Citation
  • Doyle, J., and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity Experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, https://doi.org/10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M., Heymsfield, and F. J., Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Search Google Scholar
    • Export Citation
  • Hinton, G., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 2012: Improving neural networks by preventing co-adaptation of feature detectors. arXiv, 12070580, https://arxiv.org/pdf/1207.0580.pdf.

  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Search Google Scholar
    • Export Citation
  • Klotzbach, P. J., and Coauthors, 2022: A hyperactive end to the Atlantic hurricane season: October–November 2020. Bull. Amer. Meteor. Soc., 103, E110E128, https://doi.org/10.1175/BAMS-D-20-0312.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 4063, https://doi.org/10.1175/1520-0469(1965)022<0040:OFAIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, and D. Gagne, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 11371160, https://doi.org/10.1175/WAF-D-18-0183.1.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. McGovern, C. R. Homeyer, D. J. Gange II, and T. Smith, 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Search Google Scholar
    • Export Citation
  • Li, F., J. Johnson, and S. Yeung, 2020: CS231n convolutional neural networks for visual recognition. GitHub, accessed 7 July 2021, http://cs231n.github.io/convolutional-networks/.

  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Lundberg, S. M., and S.-I. Lee, 2017: A unified approach to interpreting model predictions, arXiv, 1705.07874, https://arxiv.org/abs/1705.07874.

    • Search Google Scholar
    • Export Citation
  • Lundberg, S. M., G. G. Erion, and S.-I. Lee, 2018: Consistent individualized feature attribution for tree ensembles. arXiv, 1802.03888, https://arxiv.org/abs/1802.03888.

    • Search Google Scholar
    • Export Citation
  • Lundberg, S. M., and Coauthors, 2020: From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell., 2, 5667, https://doi.org/10.1038/s42256-019-0138-9.

    • Search Google Scholar
    • Export Citation
  • Maas, A., A. Hannun, and A. Ng, 2013: Rectifier nonlinearities improve neural network acoustic models. Proc. 30th Int. Conf. on Machine Learning, Atlanta, GA, International Machine Learning Society, 6 pp., https://ai.stanford.edu/∼amaas/papers/relu_hybrid_icml2013_final.pdf.

  • Mangalathu, S., S.-H. Hwang, and J.-S. Jeon, 2020: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct., 219, 110927, https://doi.org/10.1016/j.engstruct.2020.110927.

    • Search Google Scholar
    • Export Citation
  • Mercer, A. E., A. D. Grimes, and K. M. Wood, 2021: Application of unsupervised learning techniques to identify Atlantic tropical cyclone rapid intensification environments. J. Appl. Meteor. Climatol., 60, 119138, https://doi.org/10.1175/JAMC-D-20-0105.1.

    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, and K. S. Griffin, 2012: Examining trends in satellite-derived tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, https://doi.org/10.1175/JAMC-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • Olander, T. L., and C. S. Velden, 2009: Tropical cyclone convection and intensity analysis using differenced infrared and water vapor imagery. Wea. Forecasting, 24, 15581572, https://doi.org/10.1175/2009WAF2222284.1.

    • Search Google Scholar
    • Export Citation
  • Onderlinde, M., and M. DeMaria, 2018: Deterministic to probabilistic statistical rapid intensification index (DTOPS): A new method for forecasting RI probability. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 16C.3, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339346.html.

  • Rogers, R. F., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2009: Overshooting convection in tropical cyclones. Geophys. Res. Lett., 36, L09804, https://doi.org/10.1029/2009GL037396.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., and J. P. Kossin, 2011: New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677689, https://doi.org/10.1175/WAF-D-10-05059.1.

    • Search Google Scholar
    • Export Citation
  • Shaiba, H., and M. Hahsler, 2016: Applying machine learning methods for predicting tropical cyclone rapid intensification events. Res. J. Appl. Sci. Eng. Technol., 13, 638651, https://doi.org/10.19026/rjaset.13.3050.

    • Search Google Scholar
    • Export Citation
  • Shapley, L., 1953: A value for n-Person games. Contributions to the Theory of Games (AM-28), Vol. II, Princeton University Press, 307–318, https://doi.org/10.1515/9781400881970-018.

  • Steranka, J., E. B. Rodgers, and R. C. Gentry, 1986: The relationship between satellite measured convective bursts and tropical cyclone intensification. Mon. Wea. Rev., 114, 15391546, https://doi.org/10.1175/1520-0493(1986)114<1539:TRBSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and D. S. Nolan, 2011: On the vertical decay of the maximum tangential winds in tropical cyclones. J. Atmos. Sci., 68, 20732094, https://doi.org/10.1175/2011JAS3682.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., J. A. Knaff, and W. H. Schubert, 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, https://doi.org/10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Zhou, 2008: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteor. Atmos. Phys., 99, 116, https://doi.org/10.1007/s00703-006-0238-z.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y., Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. International Geophysics Series, Vol. 100, Academic Press, 648 pp.

  • Wimmers, A., C. Velden, and J. H. Cossuth, 2019: Using deep learning to estimate tropical cyclone intensity from satellite passive microwave imagery. Mon. Wea. Rev., 147, 22612282, https://doi.org/10.1175/MWR-D-18-0391.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39, L20809, https://doi.org/10.1029/2012GL053546.

    • Search Google Scholar
    • Export Citation
  • Xu, W., K. Balaguru, A. August, N. Lalo, N. Hodas, M. DeMaria, and D. Judi, 2021: Deep learning experiments for tropical cyclone intensity forecasts. Wea. Forecasting, 36, 14531470, https://doi.org/10.1175/WAF-D-20-0104.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., Q. Liu, and R. Hang, 2020: Tropical cyclone intensity estimation using two-branch convolutional neural network from infrared and water vapor images. IEEE Trans. Geosci. Remote Sens., 58, 586597, https://doi.org/10.1109/TGRS.2019.2938204.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1059 0 0
Full Text Views 1464 803 201
PDF Downloads 1281 583 46