• Allen, J. T., M. K. Tipett, and A. H. Sobel, 2015: An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J. Adv. Model. Earth Syst., 7, 226243, https://doi.org/10.1002/2014MS000397.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1988: Appalachian cold-air damming. Mon. Wea. Rev., 116, 137161, https://doi.org/10.1175/1520-0493(1988)116<0137:ACAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., A. Seimon, K. D. LaPenta, and M. J. Dickinson, 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922, https://doi.org/10.1175/WAF957.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., B. A. Flickinger, E. Forren, D. M. Schultz, D. Sirmans, P. L. Spencer, V. T. Wood, and C. L. Ziegler, 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314, https://doi.org/10.1175/WAF-832.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. R. Hjelmfelt, and P. L. Smith, 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688, https://doi.org/10.1175/WAF949.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., C. J. Schaffer, W. A. Gallus Jr., and K. Johnson-O’Mara, 2009: Climatology of storm reports relative to upper-level jet streaks. Wea. Forecasting, 24, 10321051, https://doi.org/10.1175/2009WAF2222216.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding-derived parameters associated with deep moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., 2021: Environmental evolution of long-lived supercell thunderstorms in the Great Plains. Wea. Forecasting, 36, 21872209, https://doi.org/10.1175/WAF-D-21-0042.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 42444277, https://doi.org/10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., C. L. Ziegler, and M. I. Biggerstaff, 2019: Creating a more realistic idealized supercell thunderstorm evolution via incorporation of base-state environmental variability. Mon. Wea. Rev., 147, 41774198, https://doi.org/10.1175/MWR-D-18-0447.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, https://doi.org/10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 19191941, https://doi.org/10.1175/MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., 2012: The influence of terrain during the 27 April 2011 super tornado outbreak and 5 July 2012 derecho around the Great Smoky Mountains National Park. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., P2, http://ams.confex.com/ams/26SLS/webprogram/Paper220492.html.

  • Gaffin, D. M., and S. S. Parker, 2006: A climatology of synoptic conditions associated with significant tornadoes across the southern Appalachians region. Wea. Forecasting, 21, 735751, https://doi.org/10.1175/WAF951.1.

    • Search Google Scholar
    • Export Citation
  • Gaffin, D. M., and D. G. Hotz, 2011: An examination of varying supercell environments over the complex terrain of the Eastern Tennessee River Valley. Natl. Wea. Dig., 35, 133148.

    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of mid-tropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958, https://doi.org/10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gropp, M. E., and C. E. Davenport, 2018: The impact of the nocturnal transition on the lifetime and evolution of supercells in the Great Plains. Wea. Forecasting, 33, 10451061, https://doi.org/10.1175/WAF-D-17-0150.1.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, https://doi.org/10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katona, B., and P. Markowski, 2021: Assessing the influence of complex terrain on severe convective environments in northeastern Alabama. Wea. Forecasting, 36, 10031029, https://doi.org/10.1175/WAF-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Katona, B., P. Markowski, C. Alexander, and S. Benjamin, 2016: The influence of topography on convective storm environments in the eastern United States as deduced from the HRRR. Wea. Forecasting, 31, 14811490, https://doi.org/10.1175/WAF-D-16-0038.1.

    • Search Google Scholar
    • Export Citation
  • Keighton, S., K. Kostura, and C. Liscinsky, 2004: Examination of tornadic and non-tornadic supercells in southwest Virginia on 28 April 2002. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P10.4, https://ams.confex.com/ams/11aram22sls/webprogram/Paper81603.html.

  • Keighton, S., J. Jackson, J. Guyer, and J. Peters, 2007: A preliminary analysis of severe mesoscale convective systems (MCS) crossing the Appalachians. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., P2.18, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_123614.htm.

  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and non-tornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, https://doi.org/10.1175/BAMS-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Lane, J., 2008: A comprehensive climatology of significant tornadoes in the Greenville-Spartanburg, South Carolina County warning area (1880–2006). Eastern Region Tech. Attachment 2008-01, 35 pp., https://www.weather.gov/media/erh/ta2008-01.pdf.

  • LaPenta, K. D., L. F. Bosart, T. J. Galarneau Jr., and M. J. Dickinson, 2005: A multiscale examination of the 31 May 1998 Mechanicville, New York, tornado. Wea. Forecasting, 20, 494516, https://doi.org/10.1175/WAF875.1.

    • Search Google Scholar
    • Export Citation
  • LeBel, L. J., B. H. Tang, and R. A. Lazear, 2021: Examining terrain effects on an upstate New York tornado event utilizing a high-resolution model simulation. Wea. Forecasting, 36, 20012020, https://doi.org/10.1175/WAF-D-21-0018.1.

    • Search Google Scholar
    • Export Citation
  • Lenning, E., H. E. Fuelberg, and A. I. Watson, 1998: An evaluation of WSR-88D severe hail algorithms along the northeastern Gulf Coast. Wea. Forecasting, 13, 10291045, https://doi.org/10.1175/1520-0434(1998)013<1029:AEOWSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 11791195, https://doi.org/10.1175/2010WAF2222379.1.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 31633183, https://doi.org/10.1175/2011MWR3635.1.

    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., and K. Knupp, 2014: An observational analysis of potential terrain influences on tornado behavior. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 11A.1A, https://ams.confex.com/ams/27SLS/webprogram/Paper255844.html.

  • Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmos. Res., 100, 457478, https://doi.org/10.1016/j.atmosres.2010.12.027.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., C. A. Doswell III, M. P. Foster, and G. R. Woodall, 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, and J. M. Peters, 2020: The influence of terrain on the convective environment and associated convective morphology from an idealized modeling perspective. J. Atmos. Sci., 77, 39293949, https://doi.org/10.1175/JAS-D-19-0190.1.

    • Search Google Scholar
    • Export Citation
  • Prociv, K. A., 2012: Terrain and landcover effects of the southern Appalachian Mountains on the rotational low-level wind fields of supercell thunderstorms. M.S. thesis, Dept. of Geography, Virginia Polytechnic Institute and State University, 95 pp., https://vtechworks.lib.vt.edu/bitstream/handle/10919/32463/Prociv_KA_T_2012.pdf?sequence=1&isAllowed=y.

  • Rackley, J. A., and J. A. Knox, 2016: A climatology of southern Appalachian cold-air damming. Wea. Forecasting, 31, 419432, https://doi.org/10.1175/WAF-D-15-0049.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rieckh, T., B. Scherllin-Pirscher, F. Ladstadter, and U. Foelsche, 2014: Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos. Meas. Tech., 7, 39473958, https://doi.org/10.5194/amt-7-3947-2014.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scheffknecht, P., S. Serafin, and V. Grubišić, 2017: A long‐lived supercell over mountainous terrain. Quart. J. Roy. Meteor. Soc., 143, 29732986, https://doi.org/10.1002/qj.3127.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. G., 2009: The impact of terrain on three cases of tornadogenesis in the Great Tennessee Valley. Electron. J. Oper. Meteor., 10, 2009-EJ11, http://nwafiles.nwas.org/ej/pdf/2009-EJ11.pdf.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Stonefield, R. C., and J. E. Hudgins, 2006: A severe weather climatology for the WFO Blacksburg, Virginia, County Warning Area. NOAA Tech. Memo. NWS ER-99, 19 pp., https://www.weather.gov/media/erh/tm99.pdf.

  • Sumrall, P., 2020: Using DCIN and DCAPE to evaluate severe surface winds in the case of elevated convection. M.S. thesis, Dept. of Natural Resources, University of Missouri–Columbia, 89 pp., https://hdl.handle.net/10355/81501.

  • Tang, B., M. Vaughan, R. Lazear, K. Corbosiero, L. Bosart, T. Wasula, and I. Lee, 2016: Topographic and boundary influences on the 22 May 2014 Duanesburg, New York, tornadic supercell. Wea. Forecasting, 31, 107127, https://doi.org/10.1175/WAF-D-15-0101.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., D. M. Wheatley, N. T. Atkins, R. W. Przybylinski, and R. Wolf, 2006: Buyer beware: Some words of caution on the use of severe wind reports in post-event assessment and research. Wea. Forecasting, 21, 408415, https://doi.org/10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Vaughan, M. T., B. H. Tang, and L. F. Bosart, 2017: Climatology and analysis of high-impact, low predictive skill severe weather events in the Northeast United States. Wea. Forecasting, 32, 19031919, https://doi.org/10.1175/WAF-D-17-0044.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. D. W. Mitchell, and K. W. Thomas, 1998: algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., E. R. Mansell, J. M. Straka, D. R. MacGorman, and D. W. Burgess, 2010: The impact of spatial variations of low-level stability on the life cycle of a simulated supercell storm. Mon. Wea. Rev., 138, 17381766, https://doi.org/10.1175/2009MWR3010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 567 567 36
Full Text Views 155 155 9
PDF Downloads 178 178 11

Environmental Evolution of Supercell Thunderstorms Interacting with the Appalachian Mountains

Sarah M. PurpuraaVerisk Weather Solutions, Lexington, Massachusetts

Search for other papers by Sarah M. Purpura in
Current site
Google Scholar
PubMed
Close
,
Casey E. DavenportbUniversity of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Casey E. Davenport in
Current site
Google Scholar
PubMed
Close
,
Matthew D. EastinbUniversity of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Matthew D. Eastin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5222-196X
,
Katherine E. McKeowncThe Pennsylvania State University, State College, Pennsylvania

Search for other papers by Katherine E. McKeown in
Current site
Google Scholar
PubMed
Close
, and
Roger R. RigginbUniversity of North Carolina at Charlotte, Charlotte, North Carolina

Search for other papers by Roger R. Riggin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Appalachian Mountains have a considerable impact on daily weather, including severe convection, across the eastern United States. However, the impact of the Appalachians on supercells is not well understood, posing a short-term forecast challenge across the region. While case studies have been conducted, there has been no large multicase analysis of supercells interacting with complex terrain. To address this gap, we examined 62 isolated warm-season supercells that occurred within the central or southern Appalachians. Each supercell was broadly classified as “crossing” or “noncrossing” based on their maintenance of supercellular structure during interaction with significant terrain features. Rapid Update Cycle (RUC) and the Rapid Refresh (RAP) model analyses were used to identify key synoptic and mesoscale factors that distinguish between environments supportive of crossing versus noncrossing supercells. Roughly 40% of supercells were sustained crossing significant terrain. Pre-storm synoptic features common among crossing storms (relative to noncrossing storms) included a stronger polar jet, a deeper trough, a north–south-oriented cold front, a strong prefrontal low-level jet, and no wedge front leeward of the terrain. Mesoscale environmental differences were determined using near-storm model soundings collected for each supercell at three locations: upstream initiation, peak terrain, and downstream dissipation. The most significant mesoscale differences were present in the peak and downstream environments, whereby crossing storms encountered stronger low-level vertical shear, greater storm-relative helicity, and greater midlevel moisture than noncrossing storms. Such results reenforce the notion that sustained dynamical support for mesocyclones is critical to supercell maintenance when interacting with significant terrain.

Significance Statement

The ability of isolated storms with rotating updrafts to traverse complex terrain is not well understood and is a notable forecast problem in the eastern United States due to the Appalachian Mountains. This study represents the first systematic analysis of numerous warm-season supercells in the vicinity of the central and southern Appalachians. We focus on synoptic and near-storm mesoscale environmental differences between storms that maintain supercellular structure following terrain interaction (“crossing”) and those that do not (“noncrossing”). The results provide useful environmental metrics for forecasting supercell longevity in the vicinity of the Appalachian Mountains.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Eastin, mdeastin@uncc.edu

Abstract

The Appalachian Mountains have a considerable impact on daily weather, including severe convection, across the eastern United States. However, the impact of the Appalachians on supercells is not well understood, posing a short-term forecast challenge across the region. While case studies have been conducted, there has been no large multicase analysis of supercells interacting with complex terrain. To address this gap, we examined 62 isolated warm-season supercells that occurred within the central or southern Appalachians. Each supercell was broadly classified as “crossing” or “noncrossing” based on their maintenance of supercellular structure during interaction with significant terrain features. Rapid Update Cycle (RUC) and the Rapid Refresh (RAP) model analyses were used to identify key synoptic and mesoscale factors that distinguish between environments supportive of crossing versus noncrossing supercells. Roughly 40% of supercells were sustained crossing significant terrain. Pre-storm synoptic features common among crossing storms (relative to noncrossing storms) included a stronger polar jet, a deeper trough, a north–south-oriented cold front, a strong prefrontal low-level jet, and no wedge front leeward of the terrain. Mesoscale environmental differences were determined using near-storm model soundings collected for each supercell at three locations: upstream initiation, peak terrain, and downstream dissipation. The most significant mesoscale differences were present in the peak and downstream environments, whereby crossing storms encountered stronger low-level vertical shear, greater storm-relative helicity, and greater midlevel moisture than noncrossing storms. Such results reenforce the notion that sustained dynamical support for mesocyclones is critical to supercell maintenance when interacting with significant terrain.

Significance Statement

The ability of isolated storms with rotating updrafts to traverse complex terrain is not well understood and is a notable forecast problem in the eastern United States due to the Appalachian Mountains. This study represents the first systematic analysis of numerous warm-season supercells in the vicinity of the central and southern Appalachians. We focus on synoptic and near-storm mesoscale environmental differences between storms that maintain supercellular structure following terrain interaction (“crossing”) and those that do not (“noncrossing”). The results provide useful environmental metrics for forecasting supercell longevity in the vicinity of the Appalachian Mountains.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew D. Eastin, mdeastin@uncc.edu
Save