Composite Mesoscale Environmental Conditions Influencing Tornado Frequencies in Landfalling Tropical Cyclones

Stanley B. Trier aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stanley B. Trier in
Current site
Google Scholar
PubMed
Close
,
David A. Ahijevych aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David A. Ahijevych in
Current site
Google Scholar
PubMed
Close
,
Dereka Carroll-Smith aNational Center for Atmospheric Research, Boulder, Colorado
bJackson State University, Jackson, Mississippi

Search for other papers by Dereka Carroll-Smith in
Current site
Google Scholar
PubMed
Close
,
George H. Bryan aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
, and
Roger Edwards cNOAA/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Roger Edwards in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Spatial patterns of tropical cyclone tornadoes (TCTs), and their relationship to patterns of mesoscale predictors within U.S. landfalling tropical cyclones (LTCs) are investigated using multicase composites from 27 years of reanalysis data (1995–2021). For 72 cases of LTCs with wide-ranging TC intensities at landfall, daytime TCT frequency maxima are found in the northeast, right-front, and downshear-right quadrants when their composites are constructed in ground-relative, TC-heading relative, and environmental shear relative coordinates, respectively. TCT maxima are located near maxima of 10-m–700-hPa bulk wind difference (BWD), which are enhanced by the TC circulation. This proxy for bulk vertical shear in roughly the lowest 3 km is among the best predictors of maximum TCT frequency. Relative to other times, the position of maximum TCT frequency during the afternoon shifts ∼100 km outward from the LTC center toward larger MLCAPE values. Composites containing the strongest LTCs have the strongest maximum 10-m–700-hPa and 10-m–500-hPa BWDs (∼20 m s−1) with nearby maximum frequencies of TCTs. Corresponding composites containing weaker LTCs but still many TCTs, had bulk vertical shear values that were ∼20% smaller (∼16 m s−1). Additional composites of cases having similarly weak average LTC strength at landfall, but few or no TCTs, had both maximum bulk vertical shears that were an additional ∼20% lower (∼12 m s−1) and smaller MLCAPE. TCT environments occurring well inland are distinguished from others by having stronger westerly shear and a west–east-oriented baroclinic zone (i.e., north–south temperature gradient) that enhances mesoscale ascent and deep convection on the LTC’s east side.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu

Abstract

Spatial patterns of tropical cyclone tornadoes (TCTs), and their relationship to patterns of mesoscale predictors within U.S. landfalling tropical cyclones (LTCs) are investigated using multicase composites from 27 years of reanalysis data (1995–2021). For 72 cases of LTCs with wide-ranging TC intensities at landfall, daytime TCT frequency maxima are found in the northeast, right-front, and downshear-right quadrants when their composites are constructed in ground-relative, TC-heading relative, and environmental shear relative coordinates, respectively. TCT maxima are located near maxima of 10-m–700-hPa bulk wind difference (BWD), which are enhanced by the TC circulation. This proxy for bulk vertical shear in roughly the lowest 3 km is among the best predictors of maximum TCT frequency. Relative to other times, the position of maximum TCT frequency during the afternoon shifts ∼100 km outward from the LTC center toward larger MLCAPE values. Composites containing the strongest LTCs have the strongest maximum 10-m–700-hPa and 10-m–500-hPa BWDs (∼20 m s−1) with nearby maximum frequencies of TCTs. Corresponding composites containing weaker LTCs but still many TCTs, had bulk vertical shear values that were ∼20% smaller (∼16 m s−1). Additional composites of cases having similarly weak average LTC strength at landfall, but few or no TCTs, had both maximum bulk vertical shears that were an additional ∼20% lower (∼12 m s−1) and smaller MLCAPE. TCT environments occurring well inland are distinguished from others by having stronger westerly shear and a west–east-oriented baroclinic zone (i.e., north–south temperature gradient) that enhances mesoscale ascent and deep convection on the LTC’s east side.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stanley B. Trier, trier@ucar.edu
Save
  • Baker, A. K., M. D. Parker, and M. D. Eastin, 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24, 223244, https://doi.org/10.1175/2008WAF2222146.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. Taszarek, and M. D. Parker, 2020: Near ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Wea. Forecasting, 35, 26212638, https://doi.org/10.1175/WAF-D-20-0153.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and R. E. Jewell, 2022: SPC mesoscale analysis compared to field project soundings: Implications for supercell environment studies. Mon. Wea. Rev., 150, 567588, https://doi.org/10.1175/MWR-D-21-0222.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Davis, C., C. Snyder, and A. C. Didlake Jr., 2008: A vortex-based perspective of eastern Pacific tropical cyclone formation. Mon. Wea. Rev., 136, 24612477, https://doi.org/10.1175/2007MWR2317.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 20812104, https://doi.org/10.1175/2009MWR2753.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., B. M. Hays, and M. C. Link, 2014: A tropical cyclone tornado parameter for use in situational awareness forecasting. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 176, https://ams.confex.com/ams/31Hurr/webprogram/Paper243962.html.

  • Edwards, R., 2010: Tropical cyclone tornado records for the modernized National Weather Service era. 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., P3.1, https://ams.confex.com/ams/25SLS/techprogram/paper_175269.htm.

  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7 (6), https://doi.org/10.55599/ejssm.v7i6.42.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. M. Mosier, 2022: Over a quarter century of TCTOR: Tropical cyclone tornadoes in the WSR-88D era. 30th Conf. on Severe Local Storms, Santa Fe, NM, Amer. Meteor. Soc., P171, https://www.spc.noaa.gov/publications/edwards/27yr-sls.pdf.

  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 15071519, https://doi.org/10.1175/WAF-D-11-00117.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and C. A. Davis, 2013: Diagnosing forecast errors in tropical cyclone motion. Mon. Wea. Rev., 141, 405430, https://doi.org/10.1175/MWR-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 17931805, https://doi.org/10.1175/1520-0493(1983)111<1793:GOTAWH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gropp, M. E., and C. E. Davenport, 2018: The impact of the nocturnal transition on the lifetime and evolution of supercell thunderstorms in the Great Plains. Wea. Forecasting, 33, 10451061, https://doi.org/10.1175/WAF-D-17-0150.1.

    • Search Google Scholar
    • Export Citation
  • Hill, E. L., W. Malkin, and W. A. Schulz Jr., 1966: Tornadoes associated with cyclones of tropical origin-practical features. J. Appl. Meteor., 5, 745763, https://doi.org/10.1175/1520-0450(1966)005<0745:TAWCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck III, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NOAA NCEI, accessed 13 March 2020, https://doi.org/10.25921/82ty-9e16.

  • Mashiko, W., H. Niino, and T. Kato, 2009: Numerical simulation of tornadogenesis in an outer-rainband minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Wea. Rev., 137, 42384260, https://doi.org/10.1175/2009MWR2959.1.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408429, https://doi.org/10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and M. L. Weisman, 2001: The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles. Mon. Wea. Rev., 129, 664687, https://doi.org/10.1175/1520-0493(2001)129<0664:TSOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., and C. Cohen, 2002: The impact of simulated storm structure and intensity on variations in the mixed layer and moist layer depths. Mon. Wea. Rev., 130, 17221748, https://doi.org/10.1175/1520-0493(2002)130<1722:TIOSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2008: Extreme helicity and intense convective towers in Hurricane Bonnie. Mon. Wea. Rev., 136, 43554372, https://doi.org/10.1175/2008MWR2423.1.

    • Search Google Scholar
    • Export Citation
  • Moore, T. W., and R. W. Dixon, 2015: Patterns in 500 hPa geopotential height associated with temporal clusters of tropical cyclone tornadoes. Meteor. Appl., 22, 314322, https://doi.org/10.1002/met.1456.

    • Search Google Scholar
    • Export Citation
  • Morin, M. J., and M. D. Parker, 2011: A numerical investigation of supercells in landfalling tropical cyclones. Geophys. Res. Lett., 38, L10801, https://doi.org/10.1029/2011GL047448.

    • Search Google Scholar
    • Export Citation
  • Novlan, D. J., and W. M. Gray, 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476488, https://doi.org/10.1175/1520-0493(1974)102<0476:HST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., J. Spotts, R. Edwards, S. Overpeck, and G. R. Woodall, 2021: Tornadoes in Hurricane Harvey. Wea. Forecasting, 36, 15891609, https://doi.org/10.1175/WAF-D-20-0196.1.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., R. Edwards, and M. Coniglio, 2020: A climatological analysis of ambient deep-tropospheric vertical shear impacts upon tornadoes in tropical cyclones. Wea. Forecasting, 35, 20332059, https://doi.org/10.1175/WAF-D-19-0220.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., M. Coniglio, and R. Edwards, 2021: How does the relationship between ambient deep tropical vertical shear and tropical cyclone tornadoes change between coastal and inland environments? Wea. Forecasting, 36, 539566, https://doi.org/10.1175/WAF-D-20-0127.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, L. A., and D. J. Cecil, 2009: Tropical cyclone tornadoes, 1950–2007. Mon. Wea. Rev., 137, 34713484, https://doi.org/10.1175/2009MWR2896.1.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., and M. D. Parker, 2014: Climatology and ingredients of significant severe convection in high-shear low-CAPE environments. Wea. Forecasting, 29, 854877, https://doi.org/10.1175/WAF-D-13-00041.1.

    • Search Google Scholar
    • Export Citation
  • Sherburn, K. D., M. D. Parker, J. R. King, and G. M. Lackmann, 2016: Composite environments of severe and nonsevere high-shear, low-CAPE convective events. Wea. Forecasting, 31, 18991927, https://doi.org/10.1175/WAF-D-16-0086.1.

    • Search Google Scholar
    • Export Citation
  • Spratt, S. M., D. W. Sharp, P. Welsh, A. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12, 479501, https://doi.org/10.1175/1520-0434(1997)012<0479:AWAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. V. Cortinas Jr., and H. E. Brooks, 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12, 613632, https://doi.org/10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., D. M. Schultz, L. M. Leslie, H. E. Brooks, D. J. Karoly, and K. L. Elmore, 2007: Tornado outbreaks associated with landfalling hurricanes in the North Atlantic Basin. Meteor. Atmos. Phys., 97, 255271, https://doi.org/10.1007/s00703-006-0256-x.

    • Search Google Scholar
    • Export Citation
  • Virtanen, P., and Coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods, 17, 261272, https://doi.org/10.1038/s41592-019-0686-2.

    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Wind Science and Engineering Center Rep., 95 pp., https://www.spc.noaa.gov/faq/tornado/ef-ttu.pdf.

All Time Past Year Past 30 Days
Abstract Views 422 422 21
Full Text Views 166 166 3
PDF Downloads 202 202 2