Toward Improved Short-Term Forecasting for Lake Victoria Basin. Part I: A Radar-Based Convective Mode Analysis

Anna del Moral Méndez aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anna del Moral Méndez in
Current site
Google Scholar
PubMed
Close
,
Tammy M. Weckwerth aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tammy M. Weckwerth in
Current site
Google Scholar
PubMed
Close
,
Rita D. Roberts aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rita D. Roberts in
Current site
Google Scholar
PubMed
Close
, and
James W. Wilson aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James W. Wilson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

East African countries benefit economically from the largest freshwater lake in Africa: Lake Victoria (LV). Around 30 million people live along its coastline, and 5.4 million people subsist on its fishing industry. However, more than 1000 fishermen die annually by high-wave conditions often produced by severe convective wind phenomena, which marks this lake one of the deadliest places in the world for hazardous weather impacts. The World Meteorological Organization launched the 3-yr High Impact Weather Lake System (HIGHWAY) project, with the main objective to reduce loss of lives and economic goods in the lake basin and improve the resilience of the local communities. The project conducted a field campaign in 2019 aiming to provide forecasters with high-resolution observations and to study the storm life cycle over the lake basin. The research discussed here used the S-band polarimetric Tanzania radar from the field campaign to investigate the diurnal cycle of the convective mode over the lake. We classified the lake storms occurring during the two wet seasons into six different convective modes and present their diurnal evolution, organization, and main radar-based attributes, thereby extending the knowledge of convection on the lake. The result is the creation of a “convection catalog for Lake Victoria,” using the operational forecast lake sectors, and defining the exact times for the different timeslots resulting from the HIGHWAY project for the marine forecast. This will inform methods to improve the marine operational forecasts for Lake Victoria, and to provide the basis for new standard operation procedures (SOP) for severe weather surveillance and warning.

Significance Statement

In this work we use new radar data over Lake Victoria, Africa, to study convective mode organization and its diurnal cycle over the lake. This work is of particular importance due to the numerous hazardous weather events and related accidents on the lake, including capsized boats, plane crashes, floods, and hailstorms on the shore settlements, that are responsible for a high annual fatality toll. Results of our analyses provide updated information for operational marine forecasts using relevant time segments and sectors of the lake to improve nowcasting operations in Lake Victoria.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anna del Moral Méndez, delmoral@ucar.edu

Abstract

East African countries benefit economically from the largest freshwater lake in Africa: Lake Victoria (LV). Around 30 million people live along its coastline, and 5.4 million people subsist on its fishing industry. However, more than 1000 fishermen die annually by high-wave conditions often produced by severe convective wind phenomena, which marks this lake one of the deadliest places in the world for hazardous weather impacts. The World Meteorological Organization launched the 3-yr High Impact Weather Lake System (HIGHWAY) project, with the main objective to reduce loss of lives and economic goods in the lake basin and improve the resilience of the local communities. The project conducted a field campaign in 2019 aiming to provide forecasters with high-resolution observations and to study the storm life cycle over the lake basin. The research discussed here used the S-band polarimetric Tanzania radar from the field campaign to investigate the diurnal cycle of the convective mode over the lake. We classified the lake storms occurring during the two wet seasons into six different convective modes and present their diurnal evolution, organization, and main radar-based attributes, thereby extending the knowledge of convection on the lake. The result is the creation of a “convection catalog for Lake Victoria,” using the operational forecast lake sectors, and defining the exact times for the different timeslots resulting from the HIGHWAY project for the marine forecast. This will inform methods to improve the marine operational forecasts for Lake Victoria, and to provide the basis for new standard operation procedures (SOP) for severe weather surveillance and warning.

Significance Statement

In this work we use new radar data over Lake Victoria, Africa, to study convective mode organization and its diurnal cycle over the lake. This work is of particular importance due to the numerous hazardous weather events and related accidents on the lake, including capsized boats, plane crashes, floods, and hailstorms on the shore settlements, that are responsible for a high annual fatality toll. Results of our analyses provide updated information for operational marine forecasts using relevant time segments and sectors of the lake to improve nowcasting operations in Lake Victoria.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anna del Moral Méndez, delmoral@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.6637 MB)
Save
  • Ashley, W. S., and T. L. Mote, 2005: Derecho hazards in the United States. Bull. Amer. Meteor. Soc., 86, 15771592, https://doi.org/10.1175/BAMS-86-11-1577.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and S. E. Nicholson, 1998: Analysis of convective activity and its relationship to the rainfall over the Rift Valley lakes of East Africa during 1983–90 using Meteosat infrared channel. J. Appl. Meteor., 37, 12501264, https://doi.org/10.1175/1520-0450(1998)037<1250:AOCAAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ba, M. B., and Coauthors, 2008: Transitioning NCAR’s autonowcast system capability into NWS operations. 13th Conf. on Aviation, Range and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., 3.1, https://ams.confex.com/ams/88Annual/techprogram/paper_131729.htm.

  • Bally, J., 2004: The Thunderstorm Interactive Forecast System: Turning automated thunderstorm tracks into severe weather warnings. Wea. Forecasting, 19, 6472, https://doi.org/10.1175/1520-0434(2004)019<0064:TTIFST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. Dixon, W.-C. Lee, B. Javornik, J. DeHart, T.-Y. Cha, and A. DesRosiers, 2022: nsf-lrose/lrose-topaz: Lrose-topaz stable final release 20220222 (lrose-topaz-2022022). Zenodo, accessed 2 March 2022, https://doi.org/10.5281/zenodo.6909479.

  • Berson, A., 1910: Bericht über die aerologische Expedition des königlichen aeronautischen Observatoriums nach Ostafrika im Jahre 1908. Vieweg, 119 pp.

  • Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 17111732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. Collier, 1989: Nowcasting of precipitation systems. Rev. Geophys., 27, 345370, https://doi.org/10.1029/RG027i003p00345.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619–647.

  • Camberlin, P., W. Gitau, O. Planchon, V. Dubreuil, B. M. Funatsu, and N. Philippon, 2018: Major role of water bodies on diurnal precipitation regimes in Eastern Africa. Int. J. Climatol., 38, 613629, https://doi.org/10.1002/joc.5197.

    • Search Google Scholar
    • Export Citation
  • Cannon, T., 2014: World disasters report 2014—Focus on culture and risk. International Federation of Red Cross and Red Crescent Societies, accessed 2 March 2022, https://opendocs.ids.ac.uk/opendocs/handle/20.500.12413/13896.

  • Chamberlain, J. M., C. L. Bain, D. F. A. Boyd, K. McCourt, T. Butcher, and S. Palmer, 2014: Forecasting storms over Lake Victoria using a high resolution model. Meteor. Appl., 21, 419430, https://doi.org/10.1002/met.1403.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., M. J. Pavolonis, J. S. Sieglaff, L. Cronce, and J. Brunner, 2020: NOAA ProbSevere v 2.0—ProbHail, ProbWind, and ProbTor. Wea. Forecasting, 35, 15231543, https://doi.org/10.1175/WAF-D-19-0242.1.

    • Search Google Scholar
    • Export Citation
  • Datta, R. R., 1981: Certain aspects of monsoonal precipitation dynamics over Lake Victoria. Monsoon Dynamics, J. Lighthill and R. Pearce, Eds., Cambridge Press, 333–350, https://doi.org/10.1017/CBO9780511897580.026.

  • del Moral, A., T. Rigo, and M. C. Llasat, 2018: A radar-based centroid tracking algorithm for severe weather surveillance: Identifying split/merge processes in convective systems. Atmos. Res., 213, 110120, https://doi.org/10.1016/j.atmosres.2018.05.030.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1968: Das Land-und Seewindsystem des Victoria-Sees nach aerologischen Daten. Arch. Meteor. Geophys. Biokl., 17A, 186206, https://doi.org/10.1007/BF02247084.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1971: Model einer lokalen atmosphaerischen Zirkulation mit Anwending auf den Victoria-See. Beitr. Phys. Atmos., 44, 95114.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., 1972: A simple climatological model of the dynamics and energetics of the nocturnal circulation at Lake Victoria. Quart. J. Roy. Meteor. Soc., 98, 322335, https://doi.org/10.1002/qj.49709841606.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Search Google Scholar
    • Export Citation
  • Goodnight, J. S., D. A. Chehak, and R. J. Trapp, 2022: Quantification of QLCS tornadogenesis, associated characteristics, and environments across a large sample. Wea. Forecasting, 37, 20872105, https://doi.org/10.1175/WAF-D-22-0016.1.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., B. Geerts, D. D. Turner, Z. Wang, and T. M. Weckwerth, 2018: The relation between nocturnal MCS evolution and its outflow boundaries in the stable boundary layer: An observational study of the 15 July 2015 MCS in PECAN. Mon. Wea. Rev., 146, 32033226, https://doi.org/10.1175/MWR-D-18-0169.1.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., and M. J. Murphy, 2017: Lightning over three large tropical lakes and the Strait of Malacca: Exploratory analyses. Mon. Wea. Rev., 145, 45594573, https://doi.org/10.1175/MWR-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2018: 100 years of research on mesoscale convective systems. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1.

  • Kayiranga, T., 1991: Observation of convective activity from satellite data over the Lake Victoria region in April 1985 (in French). Veille Climatique Satellitaire, 37, 4455.

    • Search Google Scholar
    • Export Citation
  • Kiwanuka-Tondo, J., F. Semazzi, and K. Pettiway, 2019: Climate risk communication of navigation safety and climate conditions over Lake Victoria basin: Exploring perceptions and knowledge of indigenous communities. Cogent Soc. Sci., 5, 1588485, https://doi.org/10.1080/23311886.2019.1588485.

    • Search Google Scholar
    • Export Citation
  • Kizza, M., I. Westerberg, A. Rodhe, and H. K. Ntale, 2012: Estimating areal rainfall over Lake Victoria and its basin using ground-based and satellite data. J. Hydrol., 464–465, 401411, https://doi.org/10.1016/j.jhydrol.2012.07.024.

    • Search Google Scholar
    • Export Citation
  • Kobusingye, O., N. M. Tumwesigye, J. Magoola, L. Atuyambe, and O. Alonge, 2017: Drowning among the lakeside fishing communities in Uganda: Results of a community survey. Int. J. Inj. Control Saf. Promot., 24, 363370, https://doi.org/10.1080/17457300.2016.1200629.

    • Search Google Scholar
    • Export Citation
  • Lumb, F. E., 1970: Topographic influences on thunderstorm activity near Lake Victoria. Weather, 25, 404410, https://doi.org/10.1002/j.1477-8696.1970.tb04129.x.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with mid-latitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahony, J., E. Dyer, and R. Washington, 2020: The precipitation patterns and atmospheric dynamics of the Serengeti National Park. Int. J. Climatol., 41, E2051E2072, https://doi.org/10.1002/joc.6831.

    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2021: Controls of quasi-linear convective system tornado intensity. J. Atmos. Sci., 78, 11891205, https://doi.org/10.1175/JAS-D-20-0164.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 430 pp., https://doi.org/10.1002/9780470682104.

  • Mittermaier, M., J. Wilkinson, G. Csima, S. Goodman, and K. Virts, 2022: Convective‐scale numerical weather prediction and warnings over Lake Victoria: Part I—Evaluating a lightning diagnostic. Meteor. Appl., 29, e2038, https://doi.org/10.1002/met.2038.

    • Search Google Scholar
    • Export Citation
  • Mueller, C., T. Saxen, R. Roberts, J. Wilson, T. Betancourt, S. Dettling, N. Oien, and J. Yee, 2003: NCAR auto-nowcast system. Wea. Forecasting, 18, 545561, https://doi.org/10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, and R. J. Trapp, 2019: A case study of terrain influences on upscale convective growth of a supercell. Mon. Wea. Rev., 147, 43054324, https://doi.org/10.1175/MWR-D-19-0099.1.

    • Search Google Scholar
    • Export Citation
  • Nakiyende, H., and Coauthors, 2016: Fishing effort and fish yield over a 15 year period on Lake Victoria, Uganda: Management implications. National Fisheries Resources Research Institute (NaFIRRI), 4 pp., https://aquadocs.org/bitstream/handle/1834/35791/NaFIRRI%2520FACT%2520SHEET%25202016.pdf?sequence=1&isAllowed=y.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2015: Long-term variability of the East African ‘short rains’ and its links to large-scale factors. Int. J. Climatol., 35, 39793990, https://doi.org/10.1002/joc.4259.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2017: Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys., 55, 590635, https://doi.org/10.1002/2016RG000544.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., A. T. Hartman, and D. A. Klotter, 2021a: On the diurnal cycle of rainfall and convection over Lake Victoria and its catchment. Part I: Rainfall and mesoscale convective systems. J. Hydrometeor., 22, 30373047, https://doi.org/10.1175/JHM-D-21-0083.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., A. T. Hartman, and D. A. Klotter, 2021b: On the diurnal cycle of rainfall and convection over Lake Victoria and its catchment. Part II: Meteorological factors in the diurnal and seasonal cycles. J. Hydrometeor., 22, 30493064, https://doi.org/10.1175/JHM-D-21-0085.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pierce, C. E., and Coauthors, 2004: The nowcasting of precipitation during Sydney 2000: An appraisal of the QPF algorithms. Wea. Forecasting, 19, 721, https://doi.org/10.1175/1520-0434(2004)019<0007:TNOPDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pörtner, H. O., and Coauthors, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 3056 pp., https://doi.org/10.1017/9781009325844.

  • Roberts, R. D., D. Burgess, and M. Meister, 2006: Developing tools for nowcasting storm severity. Wea. Forecasting, 21, 540558, https://doi.org/10.1175/WAF930.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and Coauthors, 2022: Taking the HIGHWAY to save lives on Lake Victoria. Bull. Amer. Meteor. Soc., 103, E485E510, https://doi.org/10.1175/BAMS-D-20-0290.1.

    • Search Google Scholar
    • Export Citation
  • Schmid, F., Y. Wang, and A. Harou, 2017: Guidelines for nowcasting techniques. WMO Bull. 68 (2), WMO-1198, 82 pp., https://public.wmo.int/en/resources/bulletin/nowcasting-guidelines-–-summary.

  • Schoen, J. M., and W. S. Ashley, 2011: A climatology of fatal convective wind events by storm type. Wea. Forecasting, 26, 109121, https://doi.org/10.1175/2010WAF2222428.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and K. L. Rasmussen, 2020: The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ., 1, 300314, https://doi.org/10.1038/s43017-020-0057-7.

    • Search Google Scholar
    • Export Citation
  • Seto, K. C., B. Güneralp, and L. R. Hutyra, 2012: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA, 109, 16 08316 088, https://doi.org/10.1073/pnas.1211658109.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Sobo, F., Y. D. Mgaya, R. J. Kayanda, and M. Semba, 2017: Fisheries statistics for Lake Victoria, Tanzania. Lake Victoria Fisheries Resources: Research and Management in Tanzania, Y. D. Mgaya and S. B. Mahongo, Eds., Springer, 241–253, https://link.springer.com/chapter/10.1007/978-3-319-69656-0_12.

  • Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett., 46, 13 58413 592, https://doi.org/10.1029/2019GL085395.

    • Search Google Scholar
    • Export Citation
  • Thiery, L., L. Gudmundsson, K. Bedka, F. H. M. Semazzi, S. Lhermitte, P. Willems, N. P. M. van Lipzig, and S. I. Seneviratne, 2017: Early warnings of hazardous thunderstorms over Lake Victoria. Environ. Res. Lett., 12, 074012, https://doi.org/10.1088/1748-9326/aa7521.

    • Search Google Scholar
    • Export Citation
  • Thiery, W., E. L. Davin, S. I. Seneviratne, K. Bedka, S. Lhermitte, and N. P. M. van Lipzig, 2016: Hazardous thunderstorm intensification over Lake Victoria. Nat. Commun., 7, 12786, https://doi.org/10.1038/ncomms12786.

    • Search Google Scholar
    • Export Citation
  • Tushemereirwe, R., D. Tuhebwe, M. A. Cooper, and F. M. D’ujanga, 2017: The most effective methods for delivering severe weather early warnings to fishermen on Lake Victoria. PLOS Curr., 9, https://doi.org/10.1371/currents.dis.d645f658cf20bc4a23499be913f1cbe1.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., and J. E. Ten Hoeve, 2019: Evolving the National Weather Service to build a Weather-Ready Nation: Connecting observations, forecasts, and warnings to decision-makers through impact-based decision support services. Bull. Amer. Meteor. Soc., 100, 19231942, https://doi.org/10.1175/BAMS-D-18-0159.1.

    • Search Google Scholar
    • Export Citation
  • UNISDR, 2009: 2009 UNISDR terminology on disaster risk reduction. United Nations International Strategy for Disaster Reduction, accessed 2 March 2022, https://www.preventionweb.net/publication/2009-unisdr-terminology-disaster-risk-reduction.

  • Virts, K. S., and S. J. Goodman, 2020: Prolific lightning and thunderstorm initiation over the Lake Victoria basin in East Africa. Mon. Wea. Rev., 148, 19711985, https://doi.org/10.1175/MWR-D-19-0260.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. Murphey, C. A. Davis, and N. T. Atkins, 2006: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829, https://doi.org/10.1175/MWR3216.1.

    • Search Google Scholar
    • Export Citation
  • Waniha, P. F., R. D. Roberts, J. W. Wilson, A. Kijazi, and B. Katole, 2019: Dual-polarization radar observations of deep convection over Lake Victoria basin in East Africa. Atmosphere, 10, 706, https://doi.org/10.3390/atmos10110706.

    • Search Google Scholar
    • Export Citation
  • Watkiss, P., R. Powell, A. Hunt, and F. Cimato, 2020: The socio-economic benefits of the HIGHWAY project. Tech. Rep., 89 pp., http://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/business/international/wiser/wiser0274_highway_seb_report.pdf.

  • Weckwerth, J., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus Jr., R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 21692187, https://doi.org/10.1175/1520-0493(1992)120<2169:TIAOOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wickham, H., and Coauthors, 2019: Welcome to the Tidyverse. J. Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686.

  • Wilson, J., and R. D. Roberts, 2022: Lake Victoria thunderstorms: Radar-observed initiation and storm evolution modes. Mon. Wea. Rev., 150, 24852502, https://doi.org/10.1175/MWR-D-21-0283.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J., Y. Feng, M. Chen, and R. D. Roberts, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 16911714, https://doi.org/10.1175/2010WAF2222417.1.

    • Search Google Scholar
    • Export Citation
  • WMO, 2017: A disaster risk reduction roadmap for the World Meteorological Organization: Final draft (version 2.1). WMO, 33 pp., https://public.wmo.int/en/resources/library/disaster-risk-reduction-roadmap-world-meteorological-organization.

  • WMO, 2020: 2020 state of climate services report: Risk information and early warning systems. World Meteorological Organization, 25 pp., https://public.wmo.int/en/resources/library/2020-state-of-climate-services-report.

  • WMO, 2021: State of the climate in Africa 2021. WMO-1300, World Meteorological Organization, 52 pp., https://public.wmo.int/en/our-mandate/climate/wmo-statement-state-of-global-climate/Africa.

  • Woodhams, B. J., C. E. Birch, J. H. Marsham, T. P. Lane, C. L. Bain, and S. Webster, 2019: Identifying key controls on storm formation over the Lake Victoria basin. Mon. Wea. Rev., 147, 33653390, https://doi.org/10.1175/MWR-D-19-0069.1.

    • Search Google Scholar
    • Export Citation
  • Yin, X. G., and S. E. Nicholson, 1998: The water balance of Lake Victoria. Hydrol. Sci. J., 43, 789811, https://doi.org/10.1080/02626669809492173.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1982: Use of a conceptual model of the lifecycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. Browning, Ed., Academic Press, 191–204.

  • Zipser, E. J., D. J. Cecil, C. Liu, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 544 404 14
Full Text Views 219 172 2
PDF Downloads 258 221 3