• Alessandrini, S., L. Delle Monache, S. Sperati, and J. N. Nissen, 2015: A novel application of an analog ensemble for short-term wind power forecasting. Renewable Energy, 76, 768781, https://doi.org/10.1016/j.renene.2014.11.061.

    • Search Google Scholar
    • Export Citation
  • Alessandrini, S., S. Sperati, and L. Delle Monache, 2019: Improving the analog ensemble wind speed forecasts for rare events. Mon. Wea. Rev., 147, 26772692, https://doi.org/10.1175/MWR-D-19-0006.1.

    • Search Google Scholar
    • Export Citation
  • Alsallakh, B., N. Kokhlikyan, V. Miglani, J. Yuan, and O. Reblitz-Richardson, 2020: Mind the pad—CNNs can develop blind spots. arXiv, 2010.02178v1, https://doi.org/10.48550/arXiv.2010.02178.

    • Search Google Scholar
    • Export Citation
  • American Meteorological Society, 2019: Atmospheric river. Glossary of Meteorology, http://glossary.ametsoc.org/wiki/atmospheric_river.

  • Anelli, V. W., T. Di Noia, E. Di Sciascio, C. Pomo, and A. Ragone, 2019: On the discriminative power of hyper-parameters in cross-validation and how to choose them. Proc. 13th ACM Conf. on Recommender Systems (RecSys’19), Copenhagen, Denmark, Association for Computing Machinery, 447–451, https://doi.org/10.1145/3298689.3347010.

  • Badrinath, A., L. Delle Monache, N. Hayatbini, W. Chapman, F. Cannon, and M. Ralph, 2023: Improving Precipitation Forecasts with Convolutional Neural Networks. UC San Diego Library Digital Collections, https://doi.org/10.6075/J0J103BG.

    • Search Google Scholar
    • Export Citation
  • Cannon, F., and Coauthors, 2020: Observations and predictability of a high-impact narrow cold-frontal rainband over Southern California on 2 February 2019. Wea. Forecasting, 35, 20832097, https://doi.org/10.1175/WAF-D-20-0012.1.

    • Search Google Scholar
    • Export Citation
  • Cervone, G., L. Clemente-Harding, S. Alessandrini, and L. Delle Monache, 2017: Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. Renewable Energy, 108, 274286, https://doi.org/10.1016/j.renene.2017.02.052.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. E., A. C. Subramanian, L. Delle Monache, S. P. Xie, and F. M. Ralph, 2019: Improving atmospheric river forecasts with machine learning. Geophys. Res. Lett., 46, 10 62710 635, https://doi.org/10.1029/2019GL083662.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. E., A. C. Subramanian, S.-P. Xie, M. D. Sierks, F. M. Ralph, and Y. Kamae, 2021: Monthly modulations of ENSO teleconnections: Implications for potential predictability in North America. J. Climate, 34, 58995921, https://doi.org/10.1175/JCLI-D-20-0391.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. E., L. Delle Monache, S. Alessandrini, A. C. Subramanian, F. M. Ralph, S.-P. Xie, S. Lerch, and N. Hayatbini, 2022: Probabilistic predictions from deterministic atmospheric river forecasts with deep learning. Mon. Wea. Rev., 150, 215234, https://doi.org/10.1175/MWR-D-21-0106.1.

    • Search Google Scholar
    • Export Citation
  • Chollet, F., and Coauthors, 2015: Keras. GitHub, accessed 1 June 2020, https://github.com/fchollet/keras.

  • Clark, M., S. Gangopadhyay, L. Hay, B. Rajagopalan, and R. Wilby, 2004: The Schaake Shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeor., 5, 243262, https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and M. R. Allen, 2002: Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J. Climate, 15, 31043109, https://doi.org/10.1175/1520-0442(2002)015<3104:ATRROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. E. Slater, J. A. Roberti, S. H. Laseter, and L. W. Swift Jr., 2017: High-resolution precipitation mapping in a mountainous watershed: Ground truth for evaluating uncertainty in a national precipitation dataset. Int. J. Climatol., 37, 124137, https://doi.org/10.1002/joc.4986.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan, and K. Searight, 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, https://doi.org/10.1175/MWR-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • Ghazvinian, M., Y. Zhang, D.-J. Seo, M. He, and N. Fernando, 2021: A novel hybrid artificial neural network-parametric scheme for postprocessing medium-range precipitation forecasts. Adv. Water Resour., 151, 103907, https://doi.org/10.1016/j.advwatres.2021.103907.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., D. E. Waliser, H. Lee, B. Tian, and E. Massoud, 2019: Climate model evaluation in the presence of observational uncertainty: Precipitation indices over the contiguous United States. J. Hydrometeor., 20, 13391357, https://doi.org/10.1175/JHM-D-18-0230.1.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor. Climatol., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grönquist, P., C. Yao, T. Ben-Nun, N. Dryden, P. Dueben, S. Li, and T. Hoefler, 2021: Deep learning for post-processing ensemble weather forecasts. Philos. Trans. Roy. Soc., A379, 20200092, https://doi.org/10.1098/rsta.2020.0092.

    • Search Google Scholar
    • Export Citation
  • Hall, T., H. E. Brooks, and C. A. Doswell III, 1999: Precipitation forecasting using a neural network. Wea. Forecasting, 14, 338345, https://doi.org/10.1175/1520-0434(1999)014<0338:PFUANN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-H. Kim, and J.-J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568572, https://doi.org/10.1038/s41586-019-1559-7.

    • Search Google Scholar
    • Export Citation
  • Haupt, S. E., W. Chapman, S. V. Adams, C. Kirkwood, J. S. Hosking, N. H. Robinson, S. Lerch, and A. C. Subramanian, 2021: Towards implementing artificial intelligence post-processing in weather and climate: Proposed actions from the Oxford 2019 workshop. Philos. Trans. Roy. Soc., A379, 20200091, https://doi.org/10.1098/rsta.2020.0091.

    • Search Google Scholar
    • Export Citation
  • Hayatbini, N., and Coauthors, 2019: Conditional generative adversarial networks (cGANS) for near real-time precipitation estimation from multispectral GOES-16 satellite imageries—PERSIANN-cGAN. Remote Sens., 11, 2193, https://doi.org/10.3390/rs11192193.

    • Search Google Scholar
    • Export Citation
  • Jasperse, J., and Coauthors, 2020: Lake Mendocino forecast informed reservoir operations final viability assessment. Lake Mendocino FIRO Steering Committee, 141 pp., https://cw3e.ucsd.edu/FIRO_docs/LakeMendocino_FIRO_FVA.pdf.

  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: ImageNet classification with deep convolutional neural networks. Proc. 25th Int. Conf. on Neural Information Processing Systems (NIPS’12), Vol. 25, Lake Tahoe, NV, Association for Computing Machinery, 1097–1105, https://dl.acm.org/doi/10.5555/2999134.2999257.

  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, https://doi.org/10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Louka, P., G. Galanis, N. Siebert, G. Kariniotakis, P. Katsafados, I. Pytharoulis, and G. Kallos, 2008: Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering. J. Wind Eng. Ind. Aerodyn., 96, 23482362, https://doi.org/10.1016/j.jweia.2008.03.013.

    • Search Google Scholar
    • Export Citation
  • Martin, A. C., F. M. Ralph, A. Wilson, L. DeHaan, and B. Kawzenuk, 2019: Rapid cyclogenesis from a mesoscale frontal wave on an atmospheric river: Impacts on forecast skill and predictability during atmospheric river landfall. J. Hydrometeor., 20, 17791794, https://doi.org/10.1175/JHM-D-18-0239.1.

    • Search Google Scholar
    • Export Citation
  • Meech, S., S. Alessandrini, W. Chapman, and L. Delle Monache, 2020: Post-processing rainfall in a high-resolution simulation of the 1994 Piedmont flood. Bull. Atmos. Sci. Technol., 1, 373385, https://doi.org/10.1007/s42865-020-00028-z.

    • Search Google Scholar
    • Export Citation
  • Nicolis, C., and S. C. Nicolis, 2007: Return time statistics of extreme events in deterministic dynamical systems. Europhys. Lett., 80, 40003, https://doi.org/10.1209/0295-5075/80/40003.

    • Search Google Scholar
    • Export Citation
  • O’Donnell, A., and Coauthors, 2020: Estimating benefits of forecast-informed reservoir operations (FIRO): Lake Mendocino case-study and transferable decision support tool. 2020 Fall Meeting, online, Amer. Geophys. Union, Abstract SY015-0002.

  • Perez, L., and J. Wang, 2017: The effectiveness of data augmentation in image classification using deep learning. arXiv, 1712.04621v1, https://doi.org/10.48550/arXiv.1712.04621.

    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, 2004: Prism data. Prism Climate Group, accessed 1 June 2020, http://prism.oregonstate.edu.

  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Search Google Scholar
    • Export Citation
  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • Ronneberger, O., P. Fischer, and T. Brox, 2015: U-net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention, N. Navab et al., Eds., Lecture Notes in Computer Science, Vol. 9351, Springer, 234–241.

  • Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv, 1506.04214v2, https://doi.org/10.48550/arXiv.1506.04214.

    • Search Google Scholar
    • Export Citation
  • Sperati, S., S. Alessandrini, and L. Delle Monache, 2017: Gridded probabilistic weather forecasts with an analog ensemble. Quart. J. Roy. Meteor. Soc., 143, 28742885, https://doi.org/10.1002/qj.3137.

    • Search Google Scholar
    • Export Citation
  • Tao, Y., X. Gao, K. Hsu, S. Sorooshian, and A. Ihler, 2016: A deep neural network modeling framework to reduce bias in satellite precipitation products. J. Hydrometeor., 17, 931945, https://doi.org/10.1175/JHM-D-15-0075.1.

    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc., 58, 267288, https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and M. Ghil, 2017: Evidence of coupling in ocean-atmosphere dynamics over the North Atlantic. Geophys. Res. Lett., 44, 20162026, https://doi.org/10.1002/2016GL072229.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 313 313 59
Full Text Views 199 200 23
PDF Downloads 198 198 23

Improving Precipitation Forecasts with Convolutional Neural Networks

Anirudhan BadrinathaDepartment of Computer Science, University of California, Berkeley, Berkeley, California

Search for other papers by Anirudhan Badrinath in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4572-4566
,
Luca Delle MonachebCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Luca Delle Monache in
Current site
Google Scholar
PubMed
Close
,
Negin HayatbinibCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Negin Hayatbini in
Current site
Google Scholar
PubMed
Close
,
Will ChapmanbCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Will Chapman in
Current site
Google Scholar
PubMed
Close
,
Forest CannonbCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Forest Cannon in
Current site
Google Scholar
PubMed
Close
, and
Marty RalphbCenter for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Marty Ralph in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A machine learning method based on spatial convolution to capture complex spatial precipitation patterns is proposed to identify and reduce biases affecting predictions of a dynamical model. The method is based on a combination of a classification and dual-regression model approach using modified U-Net convolutional neural networks (CNN) to postprocess daily accumulated precipitation over the U.S. West Coast. In this study, we leverage 34 years of high-resolution deterministic Western Weather Research and Forecasting (West-WRF) precipitation reforecasts as training data for the U-Net CNN. The data are split such that the test set contains 4 water years of data that encompass characteristic West Coast precipitation regimes: El Niño, La Niña, and dry and wet El Niño–Southern Oscillation (ENSO neutral) water years. On the unseen 4-yr dataset, the trained CNN yields a 12.9%–15.9% reduction in root-mean-square error (RMSE) and 2.7%–3.4% improvement in Pearson correlation (PC) over West-WRF for lead times of 1–4 days. Compared to an adapted model output statistics correction, the CNN reduces RMSE by 7.4%–8.9% and improves PC by 3.3%–4.2% across all events. Effectively, the CNN adds more than a day of predictive skill when compared to West-WRF. The CNN outperforms the other methods also for the prediction of extreme events, which we define as the top 10% of events with the greatest average daily accumulated precipitation. The improvement over West-WRF’s RMSE (PC) for these events is 19.8%–21.0% (4.9%–5.5%) and MOS’s RMSE (PC) is 8.8%–9.7% (4.2%–4.7%). Hence, the proposed U-Net CNN shows significantly improved forecast skill over existing methods, highlighting a promising path forward for improving precipitation forecasts.

Significance Statement

Extreme precipitation events and atmospheric rivers, which contain narrow bands of water vapor transport, can cause millions of dollars in damages. We demonstrate the utility of a computer vision-based machine learning technique for improving precipitation forecasts. We show that there is a significant increase in predictive accuracy for daily accumulated precipitation using these machine learning methods, over a 4-yr period of unseen cases, including those corresponding to the extreme precipitation associated with atmospheric rivers.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anirudhan Badrinath, abadrinath@berkeley.edu

Abstract

A machine learning method based on spatial convolution to capture complex spatial precipitation patterns is proposed to identify and reduce biases affecting predictions of a dynamical model. The method is based on a combination of a classification and dual-regression model approach using modified U-Net convolutional neural networks (CNN) to postprocess daily accumulated precipitation over the U.S. West Coast. In this study, we leverage 34 years of high-resolution deterministic Western Weather Research and Forecasting (West-WRF) precipitation reforecasts as training data for the U-Net CNN. The data are split such that the test set contains 4 water years of data that encompass characteristic West Coast precipitation regimes: El Niño, La Niña, and dry and wet El Niño–Southern Oscillation (ENSO neutral) water years. On the unseen 4-yr dataset, the trained CNN yields a 12.9%–15.9% reduction in root-mean-square error (RMSE) and 2.7%–3.4% improvement in Pearson correlation (PC) over West-WRF for lead times of 1–4 days. Compared to an adapted model output statistics correction, the CNN reduces RMSE by 7.4%–8.9% and improves PC by 3.3%–4.2% across all events. Effectively, the CNN adds more than a day of predictive skill when compared to West-WRF. The CNN outperforms the other methods also for the prediction of extreme events, which we define as the top 10% of events with the greatest average daily accumulated precipitation. The improvement over West-WRF’s RMSE (PC) for these events is 19.8%–21.0% (4.9%–5.5%) and MOS’s RMSE (PC) is 8.8%–9.7% (4.2%–4.7%). Hence, the proposed U-Net CNN shows significantly improved forecast skill over existing methods, highlighting a promising path forward for improving precipitation forecasts.

Significance Statement

Extreme precipitation events and atmospheric rivers, which contain narrow bands of water vapor transport, can cause millions of dollars in damages. We demonstrate the utility of a computer vision-based machine learning technique for improving precipitation forecasts. We show that there is a significant increase in predictive accuracy for daily accumulated precipitation using these machine learning methods, over a 4-yr period of unseen cases, including those corresponding to the extreme precipitation associated with atmospheric rivers.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anirudhan Badrinath, abadrinath@berkeley.edu
Save