• Abatzoglou, J. T., and C. A. Kolden, 2013: Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire, 22, 10031020, https://doi.org/10.1071/WF13019.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western U.S. forests. Proc. Natl. Acad. Sci. USA, 113, 11 77011 775, https://doi.org/10.1073/pnas.1607171113.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., J. K. Balch, B. A. Bradley, and C. A. Kolden, 2018: Human-related ignitions concurrent with high winds promote large wildfires across the USA. Int. J. Wildland Fire, 27, 377386, https://doi.org/10.1071/WF17149.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., D. S. Battisti, A. P. Williams, W. D. Hansen, B. J. Harvey, and C. A. Kolden, 2021a: Projected increases in western U.S. forest fire despite growing fuel constraints. Commun. Earth Environ., 2, 227, https://doi.org/10.1038/s43247-021-00299-0.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., D. E. Rupp, L. W. O’Neill, and M. Sadegh, 2021b: Compound extremes drive the western Oregon wildfires of September 2020. Geophys. Res. Lett., 48, e2021GL092520, https://doi.org/10.1029/2021GL092520.

    • Search Google Scholar
    • Export Citation
  • Abolafia-Rosenzweig, R., C. He, and F. Chen, 2022: Winter and spring climate explains a large portion of interannual variability and trend in western U.S. summer fire burned area. Environ. Res. Lett., 17, 054030, https://doi.org/10.1088/1748-9326/ac6886.

    • Search Google Scholar
    • Export Citation
  • Addison, P., and T. Oommen, 2020: Post-fire debris flow modeling analyses: Case study of the post-Thomas Fire event in California. Nat. Hazards, 100, 329343, https://doi.org/10.1007/s11069-019-03814-x.

    • Search Google Scholar
    • Export Citation
  • Agee, J. K., 1993: Fire Ecology of Pacific Northwest Forests. Island Press, 490 pp.

  • Akagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg, 2011: Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys., 11, 40394072, https://doi.org/10.5194/acp-11-4039-2011.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. B., 1936: Relative humidity or vapor pressure deficit. Ecology, 17, 277282, https://doi.org/10.2307/1931468.

  • Associated Press, 2018: California wildfires costs soar past last year’s records. NBC News, 12 December, https://www.nbcnews.com/news/us-news/california-wildfires-costs-soar-past-last-year-s-records-n946856.

  • Balch, J. K., B. A. Bradley, J. T. Abatzoglou, R. C. Nagy, E. J. Fusco, and A. L. Mahood, 2017: Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA, 114, 29462951, https://doi.org/10.1073/pnas.1617394114.

    • Search Google Scholar
    • Export Citation
  • Beck, H. E., N. E. Zimmermann, T. R. McVicar, N. Vergopolan, A. Berg, and E. F. Wood, 2018: Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214.

    • Search Google Scholar
    • Export Citation
  • Bond, W. J., and J. J. Midgley, 1995: Kill thy neighbour: An individualistic argument for the evolution of flammability. Oikos, 73, 7985, https://doi.org/10.2307/3545728.

    • Search Google Scholar
    • Export Citation
  • Bradstock, R. A., A. M. Gill, and R. J. Wiliams, Eds., 2012: Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. CSIRO, 333 pp.

  • Brewer, M. J., and C. B. Clements, 2020: The 2018 Camp Fire: Meteorological analysis using in situ observations and numerical simulations. Atmosphere, 11, 47, https://doi.org/10.3390/atmos11010047.

    • Search Google Scholar
    • Export Citation
  • Brey, S. J., E. A. Barnes, J. R. Pierce, A. L. S. Swann, and E. V. Fischer, 2021: Past variance and future projections of the environmental conditions driving western U.S. summertime wildfire burn area. Earth’s Future, 9, e2020EF001645, https://doi.org/10.1029/2020EF001645.

    • Search Google Scholar
    • Export Citation
  • Burke, M., A. Driscoll, S. Heft-Neal, J. Xue, J. Burney, and M. Wara, 2021: The changing risk and burden of wildfire in the United States. Proc. Natl. Acad. Sci. USA, 118, e2011048118, https://doi.org/10.1073/pnas.2011048118.

    • Search Google Scholar
    • Export Citation
  • Butler, B. W., and M. B. Dickinson, 2010: Tree injury and mortality in fires: Developing process-based models. Fire Ecol., 6, 5579, https://doi.org/10.4996/fireecology.0601055.

    • Search Google Scholar
    • Export Citation
  • Chandler, C. C., P. Cheney, P. Thomas, L. Trabaud, and D. Williams, 1983: Fire in Forestry, Vol. 1. Forest Fire Behavior and Effects. John Wiley and Sons, 450 pp.

  • Coen, J. L., E. N. Stavros, and J. A. Fites‐Kaufman, 2018: Deconstructing the King megafire. Ecol. Appl., 28, 15651580, https://doi.org/10.1002/eap.1752.

    • Search Google Scholar
    • Export Citation
  • Collins, B. M., R. G. Everett, and S. L. Stephens, 2011: Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests. Ecosphere, 2, 114, https://doi.org/10.1890/ES11-00026.1.

    • Search Google Scholar
    • Export Citation
  • Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz, 2014: Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett., 41, 29282933, https://doi.org/10.1002/2014GL059576.

    • Search Google Scholar
    • Export Citation
  • Dong, L., L. R. Leung, Y. Qian, Y. Zou, F. Song, and X. Chen, 2021: Meteorological environments associated with California wildfires and their potential roles in wildfire changes during 1984–2017. J. Geophys. Res. Atmos., 126, e2020JD033180, https://doi.org/10.1029/2020JD033180.

    • Search Google Scholar
    • Export Citation
  • Duff, T. J., R. Bessell, and M. G. Cruz, 2019: Grass curing/cured fuels. Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, S. Manzello, Ed., Springer, 1–7, https://doi.org/10.1007/978-3-319-51727-8_238-1.

  • Fernandez-Pello, A. C., 2017: Wildland fire spot ignition by sparks and firebrands. Fire Saf. J., 91, 210, https://doi.org/10.1016/j.firesaf.2017.04.040.

    • Search Google Scholar
    • Export Citation
  • Field, D., and D. A. Jensen, 2005: Humans, fire, and forests: Expanding the domain of wildfire research. Soc. Nat. Resour., 18, 355362, https://doi.org/10.1080/08941920590915251.

    • Search Google Scholar
    • Export Citation
  • Finney, M. A., 1998: FARSITE: Fire area simulator-model development and evaluation. Research Paper RMRS-RP-4, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 47 pp., https://doi.org/10.2737/RMRS-RP-4.

  • Friedl, M. A., and Coauthors, 2002: Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ., 83, 287302, https://doi.org/10.1016/S0034-4257(02)00078-0.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. T. Randerson, and G. R. van der Werf, 2013: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci., 118, 317328, https://doi.org/10.1002/jgrg.20042.

    • Search Google Scholar
    • Export Citation
  • Hammer, R. B., V. C. Radeloff, J. S. Fried, and S. I. Stewart, 2007: Wildland–urban interface housing growth during the 1990 in California, Oregon, and Washington. Int. J. Wildland Fire, 16, 255265, https://doi.org/10.1071/WF05077.

    • Search Google Scholar
    • Export Citation
  • Heinsch, F. A., P. L. Andrews, and D. Tirmenstein, 2017: How to generate and interpret fire characteristics charts for the U.S. fire danger rating system. General Tech. Rep. RMRS-GTR-363, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 62 pp., https://doi.org/10.2737/RMRS-GTR-363.

  • Johnston, E. S., 1919: Evaporation compared with vapor pressure deficit and wind velocity. Mon. Wea. Rev., 47, 3033, https://doi.org/10.1175/1520-0493(1919)47<30:ECWVPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnston, F. H., and Coauthors, 2012: Estimated global mortality attributable to smoke from landscape fires. Environ. Health Perspect., 120, 695701, https://doi.org/10.1289/ehp.1104422.

    • Search Google Scholar
    • Export Citation
  • Jones, B. A., 2017: Are we underestimating the economic costs of wildfire smoke? An investigation using the life satisfaction approach. J. For. Econ., 27, 8090, https://doi.org/10.1016/j.jfe.2017.03.004.

    • Search Google Scholar
    • Export Citation
  • Karter, M. J., 2008: U.S. fire loss for 2007. NFPA J., 102, 4651, https://nfpa.access.preservica.com/uncategorized/IO_dd65c0f4-3e39-459e-81fc-ca72ce44212c/.

    • Search Google Scholar
    • Export Citation
  • Kaur, H., 2020: California fire is now a ‘gigafire,’ a rare designation for a blaze that burns at least a million acres. CNN, 6 October, https://www.cnn.com/2020/10/06/us/gigafire-california-august-complex-trnd/index.html.

  • Keeley, J. E., and C. J. Fotheringham, 2003: Impact of past, present, and future fire regimes on North American Mediterranean shrublands. Fire and Climatic Change in Temperate Ecosystems of the Western Americas, T. T. Veblen et al., Eds., Ecological Studies, Vol. 160, Springer, 218–262.

  • Keeley, J. E., and P. H. Zedler, 2009: Large, high-intensity fire events in southern California shrublands: Debunking the fine-grain age patch model. Ecol. Appl., 19, 6994, https://doi.org/10.1890/08-0281.1.

    • Search Google Scholar
    • Export Citation
  • Keeley, J. E., and A. D. Syphard, 2017: Different historical fire–climate patterns in California. Int. J. Wildland Fire, 26, 253268, https://doi.org/10.1071/WF16102.

    • Search Google Scholar
    • Export Citation
  • Keeley, J. E., and A. D. Syphard, 2019: Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecol., 15, 24, https://doi.org/10.1186/s42408-019-0041-0.

    • Search Google Scholar
    • Export Citation
  • Keeley, J. E., C. J. Fotheringham, and M. A. Moritz, 2004: Lessons from the October 2003 wildfires in southern California. J. For., 102, 2631, https://doi.org/10.1093/jof/102.7.26.

    • Search Google Scholar
    • Export Citation
  • Keeley, J. E., H. Safford, C. J. Fotheringham, J. Franklin, and M. Moritz, 2009: The 2007 southern California wildfires: Lessons in complexity. J. For., 107, 287296.

    • Search Google Scholar
    • Export Citation
  • Keeley, J. E., J. Franklin, and C. D’Antonio, 2011: Fire and invasive plants on California landscapes. The Landscape Ecology of Fire, D. McKenzie, C. Miller, and D. Falk, Eds., Ecological Studies, Springer, 193–221.

  • Khorshidi, M. S., P. E. Dennison, M. R. Nikoo, A. AghaKouchak, C. H. Luce, and M. Sadegh, 2020: Increasing concurrence of wildfire drivers tripled megafire critical danger days in southern California between 1982 and 2018. Environ. Res. Lett., 15, 104002, https://doi.org/10.1088/1748-9326/abae9e.

    • Search Google Scholar
    • Export Citation
  • Koo, E., P. J. Pagni, D. R. Weise, and J. P. Woycheese, 2010: Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire, 19, 818843, https://doi.org/10.1071/WF07119.

    • Search Google Scholar
    • Export Citation
  • Kucera, C. L., 1954: Some relationships of evaporation rate to vapor pressure deficit and low wind velocity. Ecology, 35, 7175, https://doi.org/10.2307/1931406.

    • Search Google Scholar
    • Export Citation
  • Lawes, M. J., A. Richards, J. Dathe, and J. J. Midgley, 2011: Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol., 212, 20572069, https://doi.org/10.1007/s11258-011-9954-7.

    • Search Google Scholar
    • Export Citation
  • Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling, 2009: Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl., 19, 10031021, https://doi.org/10.1890/07-1183.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y.-C., P. Di, S.-H. Chen, X. Chen, J. Fan, J. DaMassa, and J. Avise, 2021: Climatology of diablo winds in Northern California and their relationships with large-scale climate variabilities. Climate Dyn., 56, 13351356, https://doi.org/10.1007/s00382-020-05535-5.

    • Search Google Scholar
    • Export Citation
  • Loudermilk, E. L., R. M. Scheller, P. J. Weisberg, J. Yang, T. E. Dilts, S. L. Karam, and C. Skinner, 2013: Carbon dynamics in the future forest: The importance of long-term successional legacy and climate–fire interactions. Global Change Biol., 19, 35023515, https://doi.org/10.1111/gcb.12310.

    • Search Google Scholar
    • Export Citation
  • Löw, P., 2019: The natural disasters of 2018 in figures. Münchener Rückversicherungs-Gesellschaft, 8 January 2019, https://www.preventionweb.net/news/natural-disasters-2018-figures.

  • Marlon, J. R., and Coauthors, 2012: Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA, 109, E535E543, https://doi.org/10.1073/pnas.1112839109.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and D. Ovens, 2019: The Northern California wildfires of 8–9 October 2017: The role of a major downslope wind event. Bull. Amer. Meteor. Soc., 100, 235256, https://doi.org/10.1175/BAMS-D-18-0037.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., and D. Ovens, 2020: The synoptic and mesoscale evolution accompanying the 2018 Camp Fire of Northern California. Bull. Amer. Meteor. Soc., 102, E168E192, https://doi.org/10.1175/BAMS-D-20-0124.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., D. Ovens, R. Conrick, and J. Saltenberger, 2021: The September 2020 wildfires over the Pacific Northwest. Wea. Forecasting, 36, 18431865, https://doi.org/10.1175/WAF-D-21-0028.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, S., 2013: Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire, 23, 7892, https://doi.org/10.1071/WF13005.

  • McClung, B., and C. F. Mass, 2020: The strong, dry winds of central and northern California: Climatology and synoptic evolution. Wea. Forecasting, 35, 21632178, https://doi.org/10.1175/WAF-D-19-0221.1.

    • Search Google Scholar
    • Export Citation
  • McClure, C. D., and D. A. Jaffe, 2018: U.S. particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. USA, 115, 79017906, https://doi.org/10.1073/pnas.1804353115.

    • Search Google Scholar
    • Export Citation
  • Mensing, S. A., J. Michaelsen, and R. Byrne, 1999: A 560-year record of Santa Ana fires reconstructed from charcoal deposited in the Santa Barbara Basin, California. Quat. Res., 51, 295305, https://doi.org/10.1006/qres.1999.2035.

    • Search Google Scholar
    • Export Citation
  • Moritz, M. A., T. J. Moody, M. A. Krawchuk, M. Hughes, and A. Hall, 2010: Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett., 37, L04801, https://doi.org/10.1029/2009GL041735.

    • Search Google Scholar
    • Export Citation
  • Mouillot, F., and C. B. Field, 2005: Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century. Global Change Biol., 11, 398420, https://doi.org/10.1111/j.1365-2486.2005.00920.x.

    • Search Google Scholar
    • Export Citation
  • Mu, M., and Coauthors, 2011: Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J. Geophys. Res., 116, D24303, https://doi.org/10.1029/2011JD016245.

    • Search Google Scholar
    • Export Citation
  • Murdoch, G. P., and C. M. Gitro, 2010: Assessing critical fire weather conditions using a red flag threat index. 35th Annual National Weather Association Meeting, Tucson, AZ, NWA, Session V, https://nwas.org/annual-meeting-events/past-meetings/2010-annual-meeting/.

  • Nauslar, N. J., J. T. Abatzoglou, and P. T. Marsh, 2018: The 2017 North Bay and southern California fires: A case study. Fire, 1, 18, https://doi.org/10.3390/fire1010018.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., J. K. Hiers, J. M. Varner, C. M. Hoffman, M. B. Dickinson, S. T. Michaletz, E. L. Loudermilk, and B. W. Butler, 2018: Advances in mechanistic approaches to quantifying biophysical fire effects. Curr. For. Rep., 4, 161177, https://doi.org/10.1007/s40725-018-0082-7.

    • Search Google Scholar
    • Export Citation
  • Pagni, P. J., 1993: Causes of the 20 October 1991 Oakland hills conflagration. Fire Saf. J., 21, 331339, https://doi.org/10.1016/0379-7112(93)90020-Q.

    • Search Google Scholar
    • Export Citation
  • Parks, S. A., and J. T. Abatzoglou, 2020: Warmer and drier fire seasons contribute to increases in area burned at high severity in western U.S. forests from 1985 to 2017. Geophys. Res. Lett., 47, e2020GL089858, https://doi.org/10.1029/2020GL089858.

    • Search Google Scholar
    • Export Citation
  • Pyne, S. J., P. L. Andrews, and R. D. Laven, 1996: Introduction to Wildland Fire. 2nd ed. Wiley, 808 pp.

  • Radeloff, V. C., and Coauthors, 2018: Rapid growth of the U.S. wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA, 115, 33143319, https://doi.org/10.1073/pnas.1718850115.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton, 2012: Global burned area and biomass burning emissions from small fires. J. Geophys. Res., 117, G04012, https://doi.org/10.1029/2012JG002128.

    • Search Google Scholar
    • Export Citation
  • Randerson, J. T., and Coauthors, 2018: Development of the Global Fire Emissions Database (GFED): Toward reconciliation of top-down and bottom-up constraints on fire contributions to variability and trends in carbonaceous aerosol. 2018 Fall Meeting Washington, D.C., Amer. Geophys. Union, Abstract A41E-01.

  • Reilly, M. J., and Coauthors, 2022: Cascadia burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere, 13, e4070, https://doi.org/10.1002/ecs2.4070.

    • Search Google Scholar
    • Export Citation
  • Rossi, D., and O.-P. Kuusela, 2019: Cost plus net value change (C+NVC) revisited: A sequential formulation of the wildfire economics model. For. Sci., 65, 125136, https://doi.org/10.1093/forsci/fxy046.

    • Search Google Scholar
    • Export Citation
  • Rothermel, R. C., 1972: A mathematical model for predicting fire spread in wildland fuels. Research Paper INT-115, U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station, 40 pp., https://www.fs.usda.gov/research/treesearch/32533.

  • Schoennagel, T., T. T. Veblen, and W. H. Romme, 2004: The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54, 661676, https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, M. J., and Coauthors, 1964: Synoptic weather types associated with critical fire weather. Tech. Rep. 449630, USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, 503 pp., https://apps.dtic.mil/sti/citations/AD0449630.

  • Schwartz, M. W., and A. D. Syphard, 2021: Fitting the solutions to the problems in managing extreme wildfire in California. Environ. Res. Commun., 3, 081005, https://doi.org/10.1088/2515-7620/ac15e1.

    • Search Google Scholar
    • Export Citation
  • Scott, J. H., and R. E. Burgan, 2005: Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. General Tech. Rep. RMRS-GTR-153, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 72 pp., https://doi.org/10.2737/RMRS-GTR-153.

  • Seager, R., A. Hooks, A. P. Williams, B. Cook, J. Nakamura, and N. Henderson, 2015: Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteor. Climatol., 54, 11211141, https://doi.org/10.1175/JAMC-D-14-0321.1.

    • Search Google Scholar
    • Export Citation
  • Sharples, J. J., R. H. D. McRae, R. O. Weber, and A. M. Gill, 2009a: A simple index for assessing fire danger rating. Environ. Modell. Software, 24, 764774, https://doi.org/10.1016/j.envsoft.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Sharples, J. J., R. H. D. McRae, R. O. Weber, and A. M. Gill, 2009b: A simple index for assessing fuel moisture content. Environ. Modell. Software, 24, 637646, https://doi.org/10.1016/j.envsoft.2008.10.012.

    • Search Google Scholar
    • Export Citation
  • Skinner, C. N., and C. Chang, 1996: Fire regimes, past and present. Wildland Resources Center Rep. 37, 1041–1069, https://www.fs.usda.gov/research/treesearch/36570.

  • Smith, C., B. J. Hatchett, and M. Kaplan, 2018: A surface observation based climatology of Diablo-like winds in California’s wine country and western Sierra Nevada. Fire, 1, 25, https://doi.org/10.3390/fire1020025.

    • Search Google Scholar
    • Export Citation
  • Srock, A. F., J. J. Charney, B. E. Potter, and S. L. Goodrick, 2018: The hot-dry-windy index: A new fire weather index. Atmosphere, 9, 279, https://doi.org/10.3390/atmos9070279.

    • Search Google Scholar
    • Export Citation
  • Syphard, A. D., and J. E. Keeley, 2015: Location, timing and extent of wildfire vary by cause of ignition. Int. J. Wildland Fire, 24, 3747, https://doi.org/10.1071/WF14024.

    • Search Google Scholar
    • Export Citation
  • Syphard, A. D., H. Rustigian-Romsos, M. Mann, E. Conlisk, M. A. Moritz, and D. Ackerly, 2019: The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environ. Change, 56, 4155, https://doi.org/10.1016/j.gloenvcha.2019.03.007.

    • Search Google Scholar
    • Export Citation
  • van der Werf, G. R., and Coauthors, 2017: Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data, 9, 697720, https://doi.org/10.5194/essd-9-697-2017.

    • Search Google Scholar
    • Export Citation
  • Werth, P. A., and Coauthors, 2016: Synthesis of knowledge of extreme fire behavior: Volume 2 for fire behavior specialists, researchers, and meteorologists. General Tech. Rep. PNW-GTR-891, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 258 pp., https://doi.org/10.2737/PNW-GTR-891.

  • Westerling, A. L., D. R. Cayan, T. J. Brown, B. L. Hall, and L. G. Riddle, 2004: Climate, Santa Ana Winds and autumn wildfires in southern California. Eos, Trans. Amer. Geophys. Union, 85, 289296, https://doi.org/10.1029/2004EO310001.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., J. T. Abatzoglou, A. Gershunov, J. Guzman‐Morales, D. A. Bishop, J. K. Balch, and D. P. Lettenmaier, 2019: Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future, 7, 892910, https://doi.org/10.1029/2019EF001210.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., M. Lin, and L. W. Horowitz, 2020: Summer PM2.5 pollution extremes caused by wildfires over the western United States during 2017–2018. Geophys. Res. Lett., 47, e2020GL089429, https://doi.org/10.1029/2020GL089429.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 246 246 19
Full Text Views 88 88 4
PDF Downloads 93 93 6

The Influence of Regional Meteorology on Carbon Emissions from California Wildfires

Patrick MurphyaDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Patrick Murphy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5310-1564
and
Clifford MassaDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Clifford Mass in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper examines the relationship between daily carbon emissions for California’s savanna and forest wildfires and regional meteorology over the past 18 years. For each fuel type, the associated weather [daily maximum wind, daily vapor pressure deficit (VPD), and 30-day-prior VPD] is determined for all fire days, the first day of each fire, and the day of maximum emissions of each fire at each fire location. Carbon emissions, used as a marker of wildfire existence and growth, for both savanna and forest wildfires are found to vary greatly with regional meteorology, with the relationship between emissions and meteorology varying with the amount of emissions, fire location, and fuel type. Weak emissions are associated with climatologically typical dryness and wind. For moderate emissions, increasing emissions are associated with higher VPD from increased warming and only display a weak relationship with wind speed. High emissions, which encompass ∼85% of the total emissions but only ∼4% of the fire days, are associated with strong winds and large VPDs. Using spatial meteorological composites for California subregions, we find that weak-to-moderate emissions are associated with modestly warmer-than-normal temperatures and light winds across the domain. In contrast, high emissions are associated with strong winds and substantial temperature anomalies, with colder-than-normal temperatures east of the Sierra Nevada and warmer-than-normal conditions over the coastal zone and the interior of California.

Significance Statement

The purpose of this work is to better understand the influence of spatially and temporally variable meteorology and spatially variable surface fuels on California’s fires. This is important because much research has focused on large climatic scales that may dilute the true influence of weather (here, high winds and dryness) on fire growth. We use a satellite-recorded fire emissions dataset to quantify daily wildfire existence and growth and to determine the relationship between regional meteorology and wildfires across varying emissions in varying fuels. The result is a novel view of the relationship between California wildfires and rapidly variable, regional meteorology.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick Murphy, patmurph@uw.edu

Abstract

This paper examines the relationship between daily carbon emissions for California’s savanna and forest wildfires and regional meteorology over the past 18 years. For each fuel type, the associated weather [daily maximum wind, daily vapor pressure deficit (VPD), and 30-day-prior VPD] is determined for all fire days, the first day of each fire, and the day of maximum emissions of each fire at each fire location. Carbon emissions, used as a marker of wildfire existence and growth, for both savanna and forest wildfires are found to vary greatly with regional meteorology, with the relationship between emissions and meteorology varying with the amount of emissions, fire location, and fuel type. Weak emissions are associated with climatologically typical dryness and wind. For moderate emissions, increasing emissions are associated with higher VPD from increased warming and only display a weak relationship with wind speed. High emissions, which encompass ∼85% of the total emissions but only ∼4% of the fire days, are associated with strong winds and large VPDs. Using spatial meteorological composites for California subregions, we find that weak-to-moderate emissions are associated with modestly warmer-than-normal temperatures and light winds across the domain. In contrast, high emissions are associated with strong winds and substantial temperature anomalies, with colder-than-normal temperatures east of the Sierra Nevada and warmer-than-normal conditions over the coastal zone and the interior of California.

Significance Statement

The purpose of this work is to better understand the influence of spatially and temporally variable meteorology and spatially variable surface fuels on California’s fires. This is important because much research has focused on large climatic scales that may dilute the true influence of weather (here, high winds and dryness) on fire growth. We use a satellite-recorded fire emissions dataset to quantify daily wildfire existence and growth and to determine the relationship between regional meteorology and wildfires across varying emissions in varying fuels. The result is a novel view of the relationship between California wildfires and rapidly variable, regional meteorology.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Patrick Murphy, patmurph@uw.edu
Save