• Adlerman, E. J., and K. K. Droegemeier, 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, https://doi.org/10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, https://doi.org/10.1175/JTECH2049.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Search Google Scholar
    • Export Citation
  • Britt, K. C., P. S. Skinner, P. L. Heinselman, and K. H. Knopfmeier, 2020: Effects of horizontal grid spacing and inflow environment on forecasts of cyclic mesocyclogenesis in NSSL’s Warn-on-Forecast System (WoFS). Wea. Forecasting, 35, 24232444, https://doi.org/10.1175/WAF-D-20-0094.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chilson, P. B., and Coauthors, 2019: Moving towards a network of autonomous UAS atmospheric profiling stations for observations in the Earth’s lower atmosphere: The 3D mesonet concept. Sensors, 19, 2720, https://doi.org/10.3390/s19122720.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2020: A real-time simulated forecasting experiment for advancing the prediction of hazardous convective weather. Bull. Amer. Meteor. Soc., 101, E2022E2024, https://doi.org/10.1175/BAMS-D-19-0298.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2021: A real-time, virtual spring forecasting experiment to advance severe weather prediction. Bull. Amer. Meteor. Soc., 102, E814E816, https://doi.org/10.1175/BAMS-D-20-0268.1.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, E. R. Mansell, Y. Jung, L. J. Wicker, M. R. Kumjian, and M. Xue, 2014: Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. J. Atmos. Sci., 71, 276299, https://doi.org/10.1175/JAS-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble forecasting and data assimilation. J. Atmos. Oceanic Technol., 26, 911927, https://doi.org/10.1175/2008JTECHA1156.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2016: Development of a High-Resolution Rapid Refresh Ensemble (HRRRE) for severe weather forecasting. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 8B.2, https://ams.confex.com/ams/28SLS/webprogram/Paper301555.html.

  • Duc, L., K. Saito, and H. Seko, 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18171, https://doi.org/10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart, T. A. Jones, N. Yussouf, and K. H. Knopfmeier, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast System. Wea. Forecasting, 34, 17211739, https://doi.org/10.1175/WAF-D-19-0094.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2022: Exploring the watch-to-warning space: Experimental outlook performance during the 2019 Spring Forecasting Experiment in NOAA’s Hazardous Weather Testbed. Wea. Forecasting, 37, 617637, https://doi.org/10.1175/WAF-D-21-0171.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, https://doi.org/10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hu, J., N. Yussouf, D. D. Turner, T. A. Jones, and X. Wang, 2019: Impact of ground-based remote sensing boundary layer observations on short-term probabilistic forecasts of a tornadic supercell event. Wea. Forecasting, 34, 14531476, https://doi.org/10.1175/WAF-D-18-0200.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 20522081, https://doi.org/10.1175/MWR-D-14-00266.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikondo, 2016: Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined radar and satellite data experiments. Wea. Forecasting, 31, 297327, https://doi.org/10.1175/WAF-D-15-0107.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., X. Wang, P. S. Skinner, A. Johnson, and Y. Wang, 2018: Assimilation of GOES-13 imager clear-sky water vapor (6.5 μm) radiances into a Warn-on-Forecast System. Mon. Wea. Rev., 146, 10771107, https://doi.org/10.1175/MWR-D-17-0280.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., L. J. Wicker, and P. S. Skinner, 2021: Updraft-based adaptive assimilation of radial velocity observations in a Warn-on-Forecast System. Wea. Forecasting, 36, 2137, https://doi.org/10.1175/WAF-D-19-0251.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Kober, K., and G. C. Craig, 2016: Physically-based stochastic perturbations (PSP) in the boundary layer to represent uncertainty in convective initiation. J. Atmos. Sci., 73, 28932911, https://doi.org/10.1175/JAS-D-15-0144.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., J. S. Kain, N. Yussouf, D. C. Dowell, D. M. Wheatley, K. H. Knopfmeier, and T. A. Jones, 2018: Advancing from convection-allowing NWP to Warn-on-Forecast: Evidence of progress. Wea. Forecasting, 33, 599607, https://doi.org/10.1175/WAF-D-17-0145.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, J. R., C. K. Potvin, P. S. Skinner, and A. E. Reinhart, 2021: The vice and virtue of increased horizontal resolution in ensemble forecasts of tornadic thunderstorms in low-CAPE, high-shear environments. Mon. Wea. Rev., 149, 921944, https://doi.org/10.1175/MWR-D-20-0281.1.

    • Search Google Scholar
    • Export Citation
  • Majcen, M., P. Markowski, Y. Richardson, D. Dowell, and J. Wurman, 2008: Multipass objective analyses of Doppler radar data. J. Atmos. Oceanic Technol., 25, 18451858, https://doi.org/10.1175/2008JTECHA1089.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Miller, W. J. S., and Coauthors, 2022: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast System. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2019: Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern United States. Mon. Wea. Rev., 147, 44114435, https://doi.org/10.1175/MWR-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, K. R. Fossell, R. A. Sobash, and M. L. Weisman, 2017: Toward 1-km ensemble forecasts over large domains. Mon. Wea. Rev., 145, 29432969, https://doi.org/10.1175/MWR-D-16-0410.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast System. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., and L. J. Wicker, 2015: On the impact of additive noise in storm-scale EnKF experiments. Mon. Wea. Rev., 143, 30673086, https://doi.org/10.1175/MWR-D-14-00323.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, and M. L. Weisman, 2019: Next-day prediction of tornadoes using convection-allowing models with 1-km horizontal grid spacing. Wea. Forecasting, 34, 11171135, https://doi.org/10.1175/WAF-D-19-0044.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • VandenBerg, M. A., M. C. Coniglio, and A. J. Clark, 2014: Comparison of next-day convection-allowing forecasts of storm motion on 1- and 4-km grids. Wea. Forecasting, 29, 878893, https://doi.org/10.1175/WAF-D-14-00011.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., N. Yussouf, C. A. Kerr, D. R. Stratman, and B. C. Matilla, 2022: An experimental 1-km Warn-on-Forecast System for hazardous weather events. Mon. Wea. Rev., 150, 30813102, https://doi.org/10.1175/MWR-D-22-0094.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., and Coauthors, 2019: Exploring applications of storm-scale probabilistic warn-on-forecast guidance in weather forecasting, HCII 2019: Virtual, Augmented and Mixed Reality. Applications and Case Studies, J. Chen and G. Fragomeni, Eds., Lecture Notes in Computer Science, Vol. 11575, Springer, 557–572, https://doi.org/10.1007/978-3-030-21565-1_39.

  • Yang, Z.-L., and Coauthors, 2011: The Community Noah land surface model with multi-parameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res., 116, D12110, https://doi.org/10.1029/2010JD015140.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., K. A. Wilson, S. M. Martinaitis, H. Vergara, P. L. Heinselman, and J. J. Gourley, 2020: The coupling of NSSL Warn-on-Forecast and FLASH systems for probabilistic flash flood prediction. J. Hydrometeor., 21, 123141, https://doi.org/10.1175/JHM-D-19-0131.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 243 243 10
Full Text Views 196 196 6
PDF Downloads 208 208 10

Results from a Pseudo-Real-Time Next-Generation 1-km Warn-on-Forecast System Prototype

Christopher A. KerraCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Christopher A. Kerr in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1237-7740
,
Brian C. MatillaaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Brian C. Matilla in
Current site
Google Scholar
PubMed
Close
,
Yaping WangaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yaping Wang in
Current site
Google Scholar
PubMed
Close
,
Derek R. StratmanaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Derek R. Stratman in
Current site
Google Scholar
PubMed
Close
,
Thomas A. JonesaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Thomas A. Jones in
Current site
Google Scholar
PubMed
Close
, and
Nusrat YussoufaCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
bNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Nusrat Yussouf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Since 2017, the Warn-on-Forecast System (WoFS) has been tested and evaluated during the Hazardous Weather Testbed Spring Forecasting Experiment (SFE) and summer convective seasons. The system has shown promise in predicting high temporal and spatial specificity of individual evolving thunderstorms. However, this baseline version of the WoFS has a 3-km horizontal grid spacing and cannot resolve some convective processes. Efforts are under way to develop a WoFS prototype at a 1-km grid spacing (WoFS-1km) with the hope to improve forecast accuracy. This requires extensive changes to data assimilation specifications and observation processing parameters. A preliminary version of WoFS-1km nested within WoFS at 3 km (WoFS-3km) was developed, tested, and run during the 2021 SFE in pseudo–real time. Ten case studies were successfully completed and provided simulations of a variety of convective modes. The reflectivity and rotation storm objects from WoFS-1km are verified against both WoFS-3km and 1-km forecasts initialized from downscaled WoFS-3km analyses using both neighborhood- and object-based techniques. Neighborhood-based verification suggests WoFS-1km improves reflectivity bias but not spatial placement. The WoFS-1km object-based reflectivity forecast accuracy is higher in most cases, leading to a net improvement. Both the WoFS-1km and downscaled forecasts have ideal reflectivity object frequency biases while the WoFS-3km overpredicts the number of reflectivity objects. The rotation object verification is ambiguous as many cases are negatively impacted by 1-km data assimilation. This initial evaluation of a WoFS-1km prototype is a solid foundation for further development and future testing.

Significance Statement

This study investigates the impacts of performing data assimilation directly on a 1-km WoFS model grid. Most previous studies have only initialized 1-km WoFS forecasts from coarser analyses. The results demonstrate some improvements to reflectivity forecasts through data assimilation on a 1-km model grid although finer resolution data assimilation did not improve rotation forecasts.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher A. Kerr, christopher.kerr@noaa.gov

Abstract

Since 2017, the Warn-on-Forecast System (WoFS) has been tested and evaluated during the Hazardous Weather Testbed Spring Forecasting Experiment (SFE) and summer convective seasons. The system has shown promise in predicting high temporal and spatial specificity of individual evolving thunderstorms. However, this baseline version of the WoFS has a 3-km horizontal grid spacing and cannot resolve some convective processes. Efforts are under way to develop a WoFS prototype at a 1-km grid spacing (WoFS-1km) with the hope to improve forecast accuracy. This requires extensive changes to data assimilation specifications and observation processing parameters. A preliminary version of WoFS-1km nested within WoFS at 3 km (WoFS-3km) was developed, tested, and run during the 2021 SFE in pseudo–real time. Ten case studies were successfully completed and provided simulations of a variety of convective modes. The reflectivity and rotation storm objects from WoFS-1km are verified against both WoFS-3km and 1-km forecasts initialized from downscaled WoFS-3km analyses using both neighborhood- and object-based techniques. Neighborhood-based verification suggests WoFS-1km improves reflectivity bias but not spatial placement. The WoFS-1km object-based reflectivity forecast accuracy is higher in most cases, leading to a net improvement. Both the WoFS-1km and downscaled forecasts have ideal reflectivity object frequency biases while the WoFS-3km overpredicts the number of reflectivity objects. The rotation object verification is ambiguous as many cases are negatively impacted by 1-km data assimilation. This initial evaluation of a WoFS-1km prototype is a solid foundation for further development and future testing.

Significance Statement

This study investigates the impacts of performing data assimilation directly on a 1-km WoFS model grid. Most previous studies have only initialized 1-km WoFS forecasts from coarser analyses. The results demonstrate some improvements to reflectivity forecasts through data assimilation on a 1-km model grid although finer resolution data assimilation did not improve rotation forecasts.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher A. Kerr, christopher.kerr@noaa.gov
Save