• Ahmadov, R., and Coauthors, 2017: Using VIIRS fire radiative power data to simulate biomass burning emissions, plume rise and smoke transport in a real-time air quality modeling system. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), Fort Worth, TX, Institute of Electrical and Electronics Engineers, 2806–2808, https://doi.org/10.1109/IGARSS.2017.8127581.

  • Almeida-Silva, M., S. M. Almeida, M. C. Freitas, C. A. Pio, T. Nunes, and J. Cardoso, 2013: Impact of Sahara dust transport on Cape Verde atmospheric element particles. J. Toxicol. Environ. Health, 76, 240251, https://doi.org/10.1080/15287394.2013.757200.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., J. S. Reid, and P. R. Colarco, 2011: International cooperative for aerosol prediction workshop on aerosol forecast verification. Bull. Amer. Meteor. Soc., 92, ES48ES53, https://doi.org/10.1175/BAMS-D-11-00105.1.

    • Search Google Scholar
    • Export Citation
  • Bian, Q., B. Ford, J. R. Pierce, and S. M. Kreidenweis, 2020: A decadal climatology of chemical, physical, and optical properties of ambient smoke in the western and southeastern United States. J. Geophys. Res. Atmos., 125, e2019JD031372, https://doi.org/10.1029/2019JD031372.

    • Search Google Scholar
    • Export Citation
  • Boer, M. M., V. Resco de Dios, and R. A. Bradstock, 2020: Unprecedented burn area of Australian mega forest fires. Nat. Climate Change, 10, 171172, https://doi.org/10.1038/s41558-020-0716-1.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note No. 9 (version 1.1), 73 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf.

  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Brewer, M. J., and C. B. Clements, 2020: The 2018 camp fire: Meteorological analysis using in situ observations and numerical simulations. Atmosphere, 11, 47, https://doi.org/10.3390/atmos11010047.

    • Search Google Scholar
    • Export Citation
  • Brown, B., and Coauthors, 2021: The Model Evaluation Tools (MET): More than a decade of community-supported forecast verification. Bull. Amer. Meteor. Soc., 102, E782E807, https://doi.org/10.1175/BAMS-D-19-0093.1.

    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Search Google Scholar
    • Export Citation
  • CAL FIRE, 2020: Wildfire activity statistics. California Department of Forestry and Fire Protection, 53 pp., https://www.fire.ca.gov/media/0fdfj2h1/2020_redbook_final.pdf.

  • Chin, M., and Coauthors, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J. Atmos. Sci., 59, 461483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chylek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929931, https://doi.org/10.1029/95GL00800.

    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. da Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Cusworth, D. H., L. J. Mickley, M. P. Sulprizio, T. Liu, M. E. Marlier, R. S. DeFries, S. K. Guttikinds, and P. Gupta, 2018: Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environ. Res. Lett., 13, 044018, https://doi.org/10.1088/1748-9326/aab303.

    • Search Google Scholar
    • Export Citation
  • Darmenov, A. S., and A. da Silva, 2015: The Quick Fire Emissions Dataset (QFED)—Documentation of versions 2.1, 2.2, and 2.4. Tech. Rep. NASA/TM-2015-104606/Vol. 38, NASA, 212 pp.

  • Das, S., P. R. Colarco, L. D. Oman, G. Taha, and O. Torres, 2021: The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere. Atmos. Chem. Phys., 21, 12 06912 090, https://doi.org/10.5194/acp-21-12069-2021.

    • Search Google Scholar
    • Export Citation
  • Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz, 2014: Large wildfire trends in the western United States 1984–2011. Geophys. Res. Lett., 41, 29282933, https://doi.org/10.1002/2014GL059576.

    • Search Google Scholar
    • Export Citation
  • Dong, X., J. S. Fu, K. Huang, D. Tong, and G. Zhuang, 2016: Model development of dust emission and heterogeneous chemistry within the community multiscale air quality modeling system and its application over East Asia. Atmos. Chem. Phys., 16, 81578180, https://doi.org/10.5194/acp-16-8157-2016.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., and Coauthors, 2007: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys., 7, 33853398, https://doi.org/10.5194/acp-7-3385-2007.

    • Search Google Scholar
    • Export Citation
  • Freitas, S. R., K. M. Longo, J. Trentmann, and D. Latham, 2010: Technical note: Sensitivity of 1-D smoke plume rise models to the inclusion of environmental wind drag. Atmos. Chem. Phys., 10, 585594, https://doi.org/10.5194/acp-10-585-2010.

    • Search Google Scholar
    • Export Citation
  • Frey, L., F. Höpner, A. Kirkevåg, and F. A.-M. Bender, 2021: Absorbing aerosols over Asia—An inter-model and model-observation comparison study using CAM5.3-Oslo. Tellus, 73B, 125, https://doi.org/10.1080/16000889.2021.1909815.

    • Search Google Scholar
    • Export Citation
  • Fu, R., A. Hoell, J. Mankin, A. Sheffield, and I. Simpson, 2021: Tackling challenges of a drier, hotter, more fire-prone future. Eos, Trans. Amer. Geophys. Union, 102, https://doi.org/10.1029/2021EO156650.

    • Search Google Scholar
    • Export Citation
  • Gani, S., and Coauthors, 2019: Submicron aerosol composition in the world’s most polluted megacity: The Delhi aerosol supersite study. Atmos. Chem. Phys., 19, 68436859, https://doi.org/10.5194/acp-19-6843-2019.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavg1_2d_aer_Nx: 2d, 1-Hourly, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4 (M2T1NXAER). Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 7 October 2022, https://doi.org/10.5067/KLICLTZ8EM9D.

  • Grell, G., S. R. Freitas, M. Steufer, and J. Fast, 2011: Inclusion of biomass burning in WRF-CHEM: Impact of wildfires on weather forecasts. Atmos. Chem. Phys., 11, 52895303, https://doi.org/10.5194/acp-11-5289-2011.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model. Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and Coauthors, 2008: Toward a monitoring and forecasting system for atmospheric composition: The GEMS Project. Bull. Amer. Meteor. Soc., 89, 11471164, https://doi.org/10.1175/2008BAMS2355.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., M.-J. Jeong, C. Bettenhausen, A. M. Sayer, R. Hansell, C. S. Seftor, J. Huang, and S.-C. Tsay, 2013: Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 92969315, https://doi.org/10.1002/jgrd.50712.

    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp.

  • Jethva, H., and Coauthors, 2018: Agricultural burning and air quality over Northern India: A synergistic analysis using NASA’s A-train satellite data and ground measurements. Aerosol Air Qual. Res., 18, 17561773, https://doi.org/10.4209/aaqr.2017.12.0583.

    • Search Google Scholar
    • Export Citation
  • Kaskaoutis, D. G., and Coauthors, 2014: Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. Atmos., 119, 54245444, https://doi.org/10.1002/2013JD021357.

    • Search Google Scholar
    • Export Citation
  • Kelly, F. J., and F. J. Fussell, 2015: Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health, 37, 631649, https://doi.org/10.1007/s10653-015-9720-1.

    • Search Google Scholar
    • Export Citation
  • Khaykin, S., and Coauthors, 2020: The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ., 1, 22, https://doi.org/10.1038/s43247-020-00022-5.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Kulkarni, P., and V. Sreekanth, 2020: Spaceborne lidar retrieved composite and speciated aerosol extinction profiles and optical depths over India: A decade of observations. Atmos. Pollut. Res., 11, 946962, https://doi.org/10.1016/j.apr.2020.02.007.

    • Search Google Scholar
    • Export Citation
  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N.C. Hsu, 2013: The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Search Google Scholar
    • Export Citation
  • Li, J., B. E. Carlson, and A. A. Lacis, 2015: How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ., 102, 260273, https://doi.org/10.1016/j.atmosenv.2014.12.010.

    • Search Google Scholar
    • Export Citation
  • Liu, H., L. A. Remer, J. Huang, H.-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, and J. M. Jackson, 2014: Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. J. Geophys. Res. Atmos., 119, 39423962, https://doi.org/10.1002/2013JD020360.

    • Search Google Scholar
    • Export Citation
  • Liu, T., and Coauthors, 2018: Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ., 172, 8392, https://doi.org/10.1016/j.atmosenv.2017.10.024.

    • Search Google Scholar
    • Export Citation
  • Loría-Salazar, S. M., A. Panorska, W. P. Arnott, J. C. Barnard, J. M. Boehmler, and H. A. Holmes, 2017: Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2.5 mass concentrations in Nevada and California, U.S.A., during 2013. Atmos. Environ., 171, 289300, https://doi.org/10.1016/j.atmosenv.2017.10.023.

    • Search Google Scholar
    • Export Citation
  • Lu, C.-H., and Coauthors, 2016: The implementation of NEMS GFS aerosol component (NGAC) version 1.0 for global dust forecasting at NOAA/NCEP. Geosci. Model Dev., 9, 19051919, https://doi.org/10.5194/gmd-9-1905-2016.

    • Search Google Scholar
    • Export Citation
  • Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, https://doi.org/10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takas, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA-2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., A. Beljaars, A. Benedetti, L. Jones, and O. Boucher, 2008: Sea-salt and dust aerosols in the ECMWF IFS model. Geophys. Res. Lett., 35, L24813, https://doi.org/10.1029/2008GL036041.

    • Search Google Scholar
    • Export Citation
  • Mulcahy, J. P., D. N. Walters, N. Bellouin, and S. F. Milton, 2014: Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model. Atmos. Chem. Phys., 14, 47494778, https://doi.org/10.5194/acp-14-4749-2014.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., and R. L. Winkler, 1987: A general framework for forecast verification. Mon. Wea. Rev., 115, 13301338, https://doi.org/10.1175/1520-0493(1987)115<1330:AGFFFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 18531877, https://doi.org/10.5194/acp-13-1853-2013.

    • Search Google Scholar
    • Export Citation
  • Nandi, I, S. Srivastava, Y. Yarragunta, R. Kumar, and D. Mitra, 2020: Distribution of surface carbon monoxide over the Indian subcontinent: Investigation of source contributions using WRF-Chem. Atmos. Environ., 243, 117838, https://doi.org/10.1016/j.atmosenv.2020.117838.

    • Search Google Scholar
    • Export Citation
  • NASA EOS imagery, 2020: Dust blankets the Canary Islands. NASA, accessed 20 March 2022, https://earthobservatory.nasa.gov/images/146337/dust-blankets-the-canary-islands.

  • Nisantzi, A., R. E. Mamouri, A. Ansmann, and D. Hadjimitsis, 2014: Injection of mineral dust into the free troposphere during fire events observed with polarization Lidar at Limassol, Cyprus. Atmos. Chem. Phys., 14, 12 15512 165, https://doi.org/10.5194/acp-14-12155-2014.

    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, A. da Silva, D. Hlavka, and M. McGill, 2011: The fate of Saharan dust across the Atlantic and implications for a Central American dust barrier. Atmos. Chem. Phys., 11, 84158431, https://doi.org/10.5194/acp-11-8415-2011.

    • Search Google Scholar
    • Export Citation
  • Ohneiser, K., and Coauthors, 2022: Australian wildfire smoke in the stratosphere: The decay phase in 2020/21 and impact on ozone depletion. Atmos. Chem. Phys., 22, 74177442, https://doi.org/10.5194/acp-22-7417-2022.

    • Search Google Scholar
    • Export Citation
  • Owen, P. R., 1964: Saltation of uniform grains in air. J. Fluid Mech., 20, 225242, https://doi.org/10.1017/S0022112064001173.

  • Peterson, D. A., J. R. Campbell, E. J. Hyer, M. D. Fromm, G. P. Kablick, J. H. Cossuth, and M. T. DeLand, 2018: Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Climate Atmos. Sci., 1, 30, https://doi.org/10.1038/s41612-018-0039-3.

    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, and A. da Silva, 2011: Impact of interactive aerosol on the African easterly jet in the NASA GEOS-5 global forecasting system. Wea. Forecasting, 26, 504519, https://doi.org/10.1175/WAF-D-10-05025.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 Data Assimilation System—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. Tech. Memo. NASA/TM-2008-104606/Vol. 27, 101 pp., https://sciences.gsfc.nasa.gov/earth/gmao/content/uploadFiles/highlight_files/GEOS5_104606-Vol27.pdf.

  • Rodríguez, S., E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez, 2015: Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys., 15, 74717486, https://doi.org/10.5194/acp-15-7471-2015.

    • Search Google Scholar
    • Export Citation
  • Sahu, S. K., P. Mangaraj, G. Beig, A. Samal, C. Pradhan, S. Dash, and B. Tyagi, 2021: Quantifying the high resolution seasonal emission of air pollutants from crop residue burning in India. Environ. Pollut., 286, 117165, https://doi.org/10.1016/j.envpol.2021.117165.

    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, C. Bettenhausen, and M.-J. Jeong, 2013: Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos., 118, 78647872, https://doi.org/10.1002/jgrd.50600.

    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., L. A. Munchak, N. C. Hsu, R. C. Levy, C. Bettenhausen, and M.-J. Jeong, 2014: MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep blue, dark target and “merged” data sets and usage recommendations. J. Geophys. Res. Atmos., 119, 13 96513 989, https://doi.org/10.1002/2014JD022453.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J., and S. Pandis, 1998: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 1st ed. John Wiley and Sons, 1326 pp.

  • Sinyuk, A., and Coauthors, 2020: The AERONET version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to version 2. Atmos. Meas. Tech., 13, 33753411, https://doi.org/10.5194/amt-13-3375-2020.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Toll, V., E. Gleeson, K. P. Nielsen, A. Männik, J. Mašek, L. Rontu, and P. Post, 2016: Impacts of the direct radiative effect of aerosols in numerical weather prediction over Europe using the ALADIN-HIRLAM NWP system. Atmos. Res., 172–173, 163173, https://doi.org/10.1016/j.atmosres.2016.01.003.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., C. Cardinali, J.-J. Morcrette, and M. Rodwell, 2005: Influence of aerosol climatology on forecasts of the African easterly jet. Geophys. Res. Lett., 32, L10801, https://doi.org/10.1029/2004GL022189.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • Wang, J., and Coauthors, 2018: The implementation of NEMS GFS aerosol component (NGAC) version 2.0 for global multispecies forecasting at NOAA/NCEP—Part 1: Model descriptions. Geosci. Model Dev., 11, 23152332, https://doi.org/10.5194/gmd-11-2315-2018.

    • Search Google Scholar
    • Export Citation
  • Wilkins, J. L., B. de Foy, A. M. Thompson, D. A. Peterson, E. J. Hyer, C. Graves, J. Fishman, and G. A. Morris, 2020: Evaluation of stratospheric intrusions and biomass burning plumes on the vertical distribution of tropospheric ozone over the Midwestern United States. J. Geophys. Res. Atmos., 125, e2020JD032454, https://doi.org/10.1029/2020JD032454.

    • Search Google Scholar
    • Export Citation
  • WMO, 2021: Desert dust outbreak in the Canary Islands (February 2020): Assessment and impacts. World Meteorological Organization GAW Rep. 259, 123 pp., https://library.wmo.int/index.php?lvl=notice_display&id=21852#.YaZPA7pOnIU.

  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yu, H., and Coauthors, 2021: Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern U.S. in June 2020. Atmos. Chem. Phys., 21, 12 35912 383, https://doi.org/10.5194/acp-21-12359-2021.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and Coauthors, 2022a: Development and evaluation of the aerosol forecast member in the National Center for Environment Prediction (NCEP)’s Global Ensemble Forecast System (GEFS-aerosols v1). Geosci. Model Dev., 15, 53375369, https://doi.org/10.5194/gmd-15-5337-2022.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., G. A. Grell, S. A. McKeen, R. Ahmadov, K. D. Froyd, and D. Murphy, 2022b: Inline coupling of simple and complex chemistry modules within the global forecast model FIM (FIM-Chem v1). Geosci. Model. Dev., 15, 467491, https://doi.org/10.5194/gmd-15-467-2022.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. Kondragunta, J. Ram, C. Schmidt, and H.-C. Huang, 2012: Near real time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res., 117, D14201, https://doi.org/10.1029/2012JD017459.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., X.-Y. Wen, and C.-J. Jang, 2010: Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting model with Chemistry (WRF-Chem). Atmos. Environ., 44, 35683582, https://doi.org/10.1016/j.atmosenv.2010.05.056.

    • Search Google Scholar
    • Export Citation
  • Zheng, B., Q. Zhang, G. Geng, C. Chen, Q. Shi, M. Cui, Y. Lei, and K. He, 2021: Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth Syst. Sci. Data, 13, 28952907, https://doi.org/10.5194/essd-13-2895-2021.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and Coauthors, 2022: The development of the NCEP Global Ensemble Forecast System version 12. Wea. Forecasting, 37, 10691084, https://doi.org/10.1175/WAF-D-21-0112.1.

    • Search Google Scholar
    • Export Citation
  • Zhuang, Y., R. Fu, B. D. Santer, R. E. Dickinson and A. Hall, 2021: Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl. Acad. Sci. USA, 118, e2111875118, https://doi.org/10.1073/pnas.2111875118.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 297 297 46
Full Text Views 215 215 9
PDF Downloads 187 187 10

Evaluation of Aerosol Optical Depth Forecasts from NOAA’s Global Aerosol Forecast Model (GEFS-Aerosols)

Partha S. BhattacharjeeaI.M. Systems Group, Inc., NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Partha S. Bhattacharjee in
Current site
Google Scholar
PubMed
Close
,
Li ZhangbCIRES, University of Colorado Boulder, Boulder, Colorado
cGlobal Systems Laboratory, Earth Systems Research Laboratory, Boulder, Colorado

Search for other papers by Li Zhang in
Current site
Google Scholar
PubMed
Close
,
Barry BakerdNOAA/ARL, College Park, Maryland

Search for other papers by Barry Baker in
Current site
Google Scholar
PubMed
Close
,
Li PanaI.M. Systems Group, Inc., NWS/NCEP/EMC, College Park, Maryland

Search for other papers by Li Pan in
Current site
Google Scholar
PubMed
Close
,
Raffaele MontuoroeNWS/NCEP/EMC, College Park, Maryland

Search for other papers by Raffaele Montuoro in
Current site
Google Scholar
PubMed
Close
,
Georg A. GrellcGlobal Systems Laboratory, Earth Systems Research Laboratory, Boulder, Colorado

Search for other papers by Georg A. Grell in
Current site
Google Scholar
PubMed
Close
, and
Jeffery T. McQueeneNWS/NCEP/EMC, College Park, Maryland

Search for other papers by Jeffery T. McQueen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The NWS/NCEP recently implemented a new global deterministic aerosol forecast model named the Global Ensemble Forecast Systems Aerosols (GEFS-Aerosols), which is based on the Finite Volume version 3 GFS (FV3GFS). It replaced the operational NOAA Environmental Modeling System (NEMS) GFS Aerosol Component version 2 (NGACv2), which was based on a global spectral model (GSM). GEFS-Aerosols uses aerosol modules from the GOCART previously integrated in the WRF Model with Chemistry (WRF-Chem), FENGSHA dust scheme, and several other updates. In this study, we have extensively evaluated aerosol optical depth (AOD) forecasts from GEFS-Aerosols against various observations over a timespan longer than one year (2019–20). The total AOD improvement (in terms of seasonal mean) in GEFS-Aerosols is about 40% compared to NGACv2 in the fall and winter season of 2019. In terms of aerosol species, the biggest improvement came from the enhanced representation of biomass burning aerosol species as GEFS-Aerosols is able to capture more fire events in southern Africa, South America, and Asia than its predecessor. Dust AODs reproduce the seasonal variation over Africa and the Middle East. We have found that correlation of total AOD over large regions of the globe remains consistent for forecast days 3–5. However, we have found that GEFS-Aerosols generates some systematic positive biases for organic carbon AOD near biomass burning regions and sulfate AOD over prediction over East Asia. The addition of a data assimilation capability to GEFS-Aerosols in the near future is expected to address these biases and provide a positive impact to aerosol forecasts by the model.

Significance Statement

The purpose of this study is to quantify improvements associated with the newly implemented global aerosol forecast model at NWS/NCEP. The monthly and seasonal variations of AOD forecasts of various aerosol regimes are overall consistent with the observations. Our results provide a guide to downstream regional air quality models like CMAQ that will use GEFS-Aerosols to provide lateral boundary conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Partha S. Bhattacharjee, Partha.Bhattacharjee@noaa.gov

Abstract

The NWS/NCEP recently implemented a new global deterministic aerosol forecast model named the Global Ensemble Forecast Systems Aerosols (GEFS-Aerosols), which is based on the Finite Volume version 3 GFS (FV3GFS). It replaced the operational NOAA Environmental Modeling System (NEMS) GFS Aerosol Component version 2 (NGACv2), which was based on a global spectral model (GSM). GEFS-Aerosols uses aerosol modules from the GOCART previously integrated in the WRF Model with Chemistry (WRF-Chem), FENGSHA dust scheme, and several other updates. In this study, we have extensively evaluated aerosol optical depth (AOD) forecasts from GEFS-Aerosols against various observations over a timespan longer than one year (2019–20). The total AOD improvement (in terms of seasonal mean) in GEFS-Aerosols is about 40% compared to NGACv2 in the fall and winter season of 2019. In terms of aerosol species, the biggest improvement came from the enhanced representation of biomass burning aerosol species as GEFS-Aerosols is able to capture more fire events in southern Africa, South America, and Asia than its predecessor. Dust AODs reproduce the seasonal variation over Africa and the Middle East. We have found that correlation of total AOD over large regions of the globe remains consistent for forecast days 3–5. However, we have found that GEFS-Aerosols generates some systematic positive biases for organic carbon AOD near biomass burning regions and sulfate AOD over prediction over East Asia. The addition of a data assimilation capability to GEFS-Aerosols in the near future is expected to address these biases and provide a positive impact to aerosol forecasts by the model.

Significance Statement

The purpose of this study is to quantify improvements associated with the newly implemented global aerosol forecast model at NWS/NCEP. The monthly and seasonal variations of AOD forecasts of various aerosol regimes are overall consistent with the observations. Our results provide a guide to downstream regional air quality models like CMAQ that will use GEFS-Aerosols to provide lateral boundary conditions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Partha S. Bhattacharjee, Partha.Bhattacharjee@noaa.gov
Save