• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Verification of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, C., and Coauthors, 2020: Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) model development. 30th Conf. on Weather Analysis and Forecasting (WAF)/26th Conf. on Numerical Weather Prediction (NWP), Boston, MA, Amer. Meteor. Soc., 8A.1, https://ams.confex.com/ams/2020Annual/webprogram/Paper370205.html.

  • Allen, J. T., and M. K. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electron. J. Severe Storms Meteor., 10 (3), https://ejssm.com/ojs/index.php/site/article/view/60.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Black, T. L., and Coauthors, 2021: A limited area modeling capability for the finite-volume cubed-sphere (FV3) dynamical core and comparison with a global two-way nest. J. Adv. Model. Earth Syst., 13, e2021MS002483, https://doi.org/10.1029/2021MS002483.

    • Search Google Scholar
    • Export Citation
  • Britt, K. C., P. S. Skinner, P. L. Heinselman, and K. H. Knopfmeier, 2020: Effects of horizontal grid spacing and inflow environment on forecasts of cyclic mesocyclogenesis in NSSL’s Warn-on-Forecast System (WoFS). Wea. Forecasting, 35, 24232444, https://doi.org/10.1175/WAF-D-20-0094.1.

    • Search Google Scholar
    • Export Citation
  • Brown, B., and Coauthors, 2021: The Model Evaluation Tools (MET): More than a decade of community-supported forecast verification. Bull. Amer. Meteor. Soc., 102, E782E807, https://doi.org/10.1175/BAMS-D-19-0093.1.

    • Search Google Scholar
    • Export Citation
  • Burke, A., N. Snook, D. J. Gagne II, S. McCorkle, and A. McGovern, 2020: Calibration of machine learning–based probabilistic hail predictions for operational forecasting. Wea. Forecasting, 35, 149168, https://doi.org/10.1175/WAF-D-19-0105.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn state–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., J. S. Kain, P. T. Marsh, J. Correia Jr., M. Xue, and F. Kong, 2012a: Forecasting tornado path lengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, https://doi.org/10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012b: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, https://doi.org/10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006a: Object-based verification of precipitation forecasts. Part I: Methods and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, https://doi.org/10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D., 2020: HRRR Data-Assimilation System (HRRRDAS) and HRRRE forecasts. NOAA/ESRL/GSL Tech. Rep., 8 pp., https://rapidrefresh.noaa.gov/internal/pdfs/2020_Spring_Experiment_HRRRE_Documentation.pdf.

  • Faust, E., M. Bove, and A. Radler, 2021: Thundestorms, hail and tornadoes: Localised but extremely destructive. Munich RE, accessed 10 January 2021, https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/thunderstorms-hail-and-tornados.html.

  • Flora, M. L., C. K. Potvin, P. S. Skinner, S. Handler, and A. McGovern, 2021: Using machine learning to generate storm-scale probabilistic guidance of severe weather hazards in the Warn-on-Forecast System. Mon. Wea. Rev., 149, 15351557, https://doi.org/10.1175/MWR-D-20-0194.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, A. McGovern, S. E. Haupt, R. A. Sobash, J. K. Williams, and M. Xue, 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 18191840, https://doi.org/10.1175/WAF-D-17-0010.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., II, S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2017: Breaking new ground in severe weather prediction: The 2015 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Wea. Forecasting, 32, 15411568, https://doi.org/10.1175/WAF-D-16-0178.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2021: Exploring convection-allowing model evaluation strategies for severe local storms using the finite-volume cubed-sphere (FV3) model core. Wea. Forecasting, 36, 319, https://doi.org/10.1175/WAF-D-20-0090.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., M. L. Witek, J. Teixeira, R. Sun, H.-L. Pan, J. K. Fletcher, and C. S. Bretherton, 2016: Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass-flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Wea. Forecasting, 31, 341352, https://doi.org/10.1175/WAF-D-15-0053.1.

    • Search Google Scholar
    • Export Citation
  • Harris, L. M., S. L. Rees, M. Morin, L. Zhou, and W. F. Stern, 2019: Explicit prediction of continental convection in a skillful variable-resolution global model. J. Adv. Model. Earth Syst., 11, 18471869, https://doi.org/10.1029/2018MS001542.

    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., H. E. Brooks, and M. P. Kay, 2013: Objective limits on forecasting skill of rare events. Wea. Forecasting, 28, 525534, https://doi.org/10.1175/WAF-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., P. R. Janish, S. J. Weiss, M. E. Baldwin, R. S. Schneider, and H. E. Brooks, 2003: Collaboration between forecasters and research scientists at the NSSL and SPC: The spring program. Bull. Amer. Meteor. Soc., 84, 17971806, https://doi.org/10.1175/BAMS-84-12-1797.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner, D. Dowell, and C. Alexander, 2021: A progress report on the development of the High-Resolution Rapid Refresh ensemble. Wea. Forecasting, 36, 791804, https://doi.org/10.1175/WAF-D-20-0098.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2020: An analysis of subdaily severe thunderstorm probabilities for the United States. Wea. Forecasting, 35, 107112, https://doi.org/10.1175/WAF-D-19-0145.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., K. Lombardo, and S. Loeffler, 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78, 34173440, https://doi.org/10.1175/JAS-D-21-0034.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., T. Smith, K. Hondl, G. J. Stumpf, and A. Witt, 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and M. R. Kumjian, 2022: Influences of CAPE on hail production in simulated supercell storms. J. Atmos. Sci., 79, 179204, https://doi.org/10.1175/JAS-D-21-0054.1.

    • Search Google Scholar
    • Export Citation
  • Long, P., Jr., 1986: An economical and compatible scheme for parameterizing the stable surface layer in the medium range forecast model. NCEP Office Note 321, 24 pp., https://repository.library.noaa.gov/view/noaa/11489.

  • Long, P., Jr, 1990: Derivation and suggested method of the application of simplified relations for surface fluxes in the medium-range forecast model: Unstable case. NCEP Office Note 356, 53 pp., https://repository.library.noaa.gov/view/noaa/11462.

  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., J. S. Kain, V. Lakshmanan, A. J. Clark, N. M. Hitchens, and J. Hardy, 2012: A method for calibrating deterministic forecasts of rare events. Wea. Forecasting, 27, 531538, https://doi.org/10.1175/WAF-D-11-00074.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136, https://doi.org/10.1175/JAS3816.1.

    • Search Google Scholar
    • Export Citation
  • Miller, W. J. S., and Coauthors, 2022: Exploring the usefulness of downscaling free forecasts from the Warn-on-Forecast System. Wea. Forecasting, 37, 181203, https://doi.org/10.1175/WAF-D-21-0079.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., C. R. Homeyer, and J. T. Allen, 2021: A 23-year severe hail climatology using GridRad MESH observations. Mon. Wea. Rev., 149, 945958, https://doi.org/10.1175/MWR-D-20-0178.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M. Pagowski, and K. Sušelj, 2019: A description of the MYNN–EDMF scheme and coupling to other components in WRF-ARW. NOAA Tech. Memo. OAR GSD-61, 42 pp., https://doi.org/10.25923/n9wm-be49.

  • Olson, J. B., T. Smirnova, J. S. Kenyon, D. D. Turner, J. M. Brown, W. Zheng, and B. W. Green, 2021: A description of the MYNN surface-layer scheme. NOAA Tech. Memo. OAR GSL-67, 26 pp., https://repository.library.noaa.gov/view/noaa/30605.

  • Ortega, K. L., 2018: Evaluating multi-radar, multi-sensor products for surface hail-fall diagnosis. Electron. J. Severe Storms Meteor., 13 (1), https://ejssm.org/archives/wp-content/uploads/2021/09/vol13-1.pdf.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2020: Assessing systematic impacts of PBL schemes on storm evolution in the NOAA Warn-on-Forecast System. Mon. Wea. Rev., 148, 25672590, https://doi.org/10.1175/MWR-D-19-0389.1.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., B. T. Gallo, I. L. Jirak, A. J. Clark, D. C. Dowell, X. Wang, and Y. Wang, 2020: What does a convection-allowing ensemble of opportunity buy us in forecasting thunderstorms? Wea. Forecasting, 35, 22932316, https://doi.org/10.1175/WAF-D-20-0069.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Search Google Scholar
    • Export Citation
  • Shedd, L., M. R. Kumjian, I. Giammanco, T. Brown-Giammanco, and B. R. Maiden, 2021: Hailstone shapes. J. Atmos. Sci., 78, 639652, https://doi.org/10.1175/JAS-D-20-0250.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast System. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., F. Kong, K. A. Brewster, M. Xue, K. W. Thomas, T. A. Supinie, S. Perfater, and B. Albright, 2019: Evaluation of convection-permitting precipitation forecast products using WRF, NMMB, and FV3 for the 2016–17 NOAA hydrometeorology testbed flash flood and intense rainfall experiments. Wea. Forecasting, 34, 781804, https://doi.org/10.1175/WAF-D-18-0155.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., C. S. Schwartz, G. S. Romine, K. R. Fossell, and M. L. Weisman, 2016: Severe weather prediction using storm surrogates from an ensemble forecasting system. Wea. Forecasting, 31, 255271, https://doi.org/10.1175/WAF-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Wendt, N. A., and I. L. Jirak, 2021: An hourly climatology of operational MRMS MESH-diagnosed severe and significant hail with comparisons to storm data hail reports. Wea. Forecasting, 36, 645659, https://doi.org/10.1175/WAF-D-20-0158.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., K. H. Knopfmeier, T. A. Jones, and G. J. Creager, 2015: Storm-scale data assimilation and ensemble forecasting with the NSSL experimental Warn-on-Forecast System. Part I: Radar data experiments. Wea. Forecasting, 30, 17951817, https://doi.org/10.1175/WAF-D-15-0043.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, J. T. Johnson, E. De Wayne Mitchell, and K. W. Thomas, 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Coauthors, 2019: How well does an FV3-based model predict precipitation at a convection-allowing resolution? Results from CAPS forecasts for the 2018 NOAA hazardous weather test bed with different physics combinations. Geophys. Res. Lett., 46, 35233531, https://doi.org/10.1029/2018GL081702.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., G. Firl, L. Bernardet, and V. Kunkel, 2018: Scientific and technical documentation for parameterizations in the Common Community Physics Package (CCPP). 25th Conf. on Numerical Weather Prediction, Denver, CO, Amer. Meteor. Soc., 53, https://ams.confex.com/ams/29WAF25NWP/webprogram/Paper345517.html.

  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 342 342 38
Full Text Views 126 126 11
PDF Downloads 155 155 13

Just What Is “Good”? Musings on Hail Forecast Verification through Evaluation of FV3-HAILCAST Hail Forecasts

Rebecca D. Adams-SelinaVerisk Atmospheric and Environmental Research, Bellevue, Nebraska

Search for other papers by Rebecca D. Adams-Selin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1148-6347
,
Christina KalbbResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christina Kalb in
Current site
Google Scholar
PubMed
Close
,
Tara JensenbResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Tara Jensen in
Current site
Google Scholar
PubMed
Close
,
John HendersoncVerisk Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by John Henderson in
Current site
Google Scholar
PubMed
Close
,
Tim SupiniedCenter for Analysis and Prediction of Storms, Norman, Oklahoma

Search for other papers by Tim Supinie in
Current site
Google Scholar
PubMed
Close
,
Lucas HarriseNOAA/OAR Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Lucas Harris in
Current site
Google Scholar
PubMed
Close
,
Yunheng WangfCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
gNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Yunheng Wang in
Current site
Google Scholar
PubMed
Close
,
Burkely T. GallofCooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
hNOAA/NWS/NCEP Storm Prediction Center, Norman, Oklahoma

Search for other papers by Burkely T. Gallo in
Current site
Google Scholar
PubMed
Close
, and
Adam J. ClarkgNOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
iSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Adam J. Clark in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hail forecasts produced by the CAM-HAILCAST pseudo-Lagrangian hail size forecasting model were evaluated during the 2019, 2020, and 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFEs). As part of this evaluation, HWT SFE participants were polled about their definition of a “good” hail forecast. Participants were presented with two different verification methods conducted over three different spatiotemporal scales, and were then asked to subjectively evaluate the hail forecast as well as the different verification methods themselves. Results recommended use of multiple verification methods tailored to the type of forecast expected by the end-user interpreting and applying the forecast. The hail forecasts evaluated during this period included an implementation of CAM-HAILCAST in the Limited Area Model of the Unified Forecast System with the Finite Volume 3 (FV3) dynamical core. Evaluation of FV3-HAILCAST over both 1- and 24-h periods found continued improvement from 2019 to 2021. The improvement was largely a result of wide intervariability among FV3 ensemble members with different microphysics parameterizations in 2019 lessening significantly during 2020 and 2021. Overprediction throughout the diurnal cycle also lessened by 2021. A combination of both upscaling neighborhood verification and an object-based technique that only retained matched convective objects was necessary to understand the improvement, agreeing with the HWT SFE participants’ recommendations for multiple verification methods.

Significance Statement

“Good” forecasts of hail can be determined in multiple ways and must depend on both the performance of the guidance and the perspective of the end-user. This work looks at different verification strategies to capture the performance of the CAM-HAILCAST hail forecasting model across three years of the Spring Forecasting Experiment (SFE) in different parent models. Verification strategies were informed by SFE participant input via a survey. Skill variability among models decreased in SFE 2021 relative to prior SFEs. The FV3 model in 2021, compared to 2019, provided improved forecasts of both convective distribution and 38-mm (1.5 in.) hail size, as well as less overforecasting of convection from 1900 to 2300 UTC.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rebecca Adams-Selin, rselin@aer.com

Abstract

Hail forecasts produced by the CAM-HAILCAST pseudo-Lagrangian hail size forecasting model were evaluated during the 2019, 2020, and 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments (SFEs). As part of this evaluation, HWT SFE participants were polled about their definition of a “good” hail forecast. Participants were presented with two different verification methods conducted over three different spatiotemporal scales, and were then asked to subjectively evaluate the hail forecast as well as the different verification methods themselves. Results recommended use of multiple verification methods tailored to the type of forecast expected by the end-user interpreting and applying the forecast. The hail forecasts evaluated during this period included an implementation of CAM-HAILCAST in the Limited Area Model of the Unified Forecast System with the Finite Volume 3 (FV3) dynamical core. Evaluation of FV3-HAILCAST over both 1- and 24-h periods found continued improvement from 2019 to 2021. The improvement was largely a result of wide intervariability among FV3 ensemble members with different microphysics parameterizations in 2019 lessening significantly during 2020 and 2021. Overprediction throughout the diurnal cycle also lessened by 2021. A combination of both upscaling neighborhood verification and an object-based technique that only retained matched convective objects was necessary to understand the improvement, agreeing with the HWT SFE participants’ recommendations for multiple verification methods.

Significance Statement

“Good” forecasts of hail can be determined in multiple ways and must depend on both the performance of the guidance and the perspective of the end-user. This work looks at different verification strategies to capture the performance of the CAM-HAILCAST hail forecasting model across three years of the Spring Forecasting Experiment (SFE) in different parent models. Verification strategies were informed by SFE participant input via a survey. Skill variability among models decreased in SFE 2021 relative to prior SFEs. The FV3 model in 2021, compared to 2019, provided improved forecasts of both convective distribution and 38-mm (1.5 in.) hail size, as well as less overforecasting of convection from 1900 to 2300 UTC.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rebecca Adams-Selin, rselin@aer.com
Save