• Bassill, N. P., 2014: Accuracy of early GFS and ECMWF Sandy (2012) track forecasts: Evidence for a dependence on cumulus parameterization. Geophys. Res. Lett., 41, 32743281, https://doi.org/10.1002/2014GL059839.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, https://doi.org/10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., E. Blake, M. DeMaria, A. Penny, A. Latto, E. Rappaport, and V. Tallapragada, 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., 2022: How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large-eddy simulations. J. Adv. Model. Earth Syst., 14, e2022MS003088, https://doi.org/10.1029/2022MS003088.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and G. H. Bryan, 2021: Role of advection of parameterized turbulence kinetic energy in idealized tropical cyclone simulations. J. Atmos. Sci., 78, 35933611, https://doi.org/10.1175/JAS-D-21-0088.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877898, https://doi.org/10.1175/MWR-D-16-0147.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., J. A. Zhang, and F. D. Marks, 2019: A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear. Geophys. Res. Lett., 46, 92419251, https://doi.org/10.1029/2019GL083667.

    • Search Google Scholar
    • Export Citation
  • Chen, X., G. H. Bryan, J. A. Zhang, J. J. Cione, and F. D. Marks, 2021a: A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. J. Atmos. Sci., 78, 35593574, https://doi.org/10.1175/JAS-D-20-0227.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, B. Zhou, J. Fang, J. A. Zhang, and F. D. Marks, 2021b: Effect of scale-aware planetary boundary layer schemes on tropical cyclone intensification and structural changes in the gray zone. Mon. Wea. Rev., 149, 20792095, https://doi.org/10.1175/MWR-D-20-0297.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., G. H. Bryan, A. Hazelton, F. D. Marks, and P. Fitzpatrick, 2022: Evaluation and improvement of a TKE-based eddy-diffusivity mass-flux (EDMF) planetary boundary layer scheme in hurricane conditions. Wea. Forecasting, 37, 935951, https://doi.org/10.1175/WAF-D-21-0168.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2020: The evaluation of real-time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional (SAR) model performance for the 2019 Atlantic hurricane season. Atmosphere, 11, 617, https://doi.org/10.3390/atmos11060617.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2019: A climatological analysis of tropical cyclone rapid intensification in environments of upper-tropospheric troughs. Mon. Wea. Rev., 147, 36933719, https://doi.org/10.1175/MWR-D-19-0013.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., P. D. Reasor, R. F. Rogers, and J. F. Gamache, 2022: An analysis of tropical cyclone vortex and convective characteristics in relation to storm intensity using a novel airborne Doppler radar database. Mon. Wea. Rev., 150, 22552278, https://doi.org/10.1175/MWR-D-21-0223.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., P. D. Reasor, B. H. Tang, K. L. Corbosiero, R. D. Torn, and X. Chen, 2023: A tale of two vortex evolutions: Using a high-resolution ensemble to assess the impacts of ventilation on a tropical cyclone rapid intensification event. Mon. Wea. Rev., 151, 297–320, https://doi.org/10.1175/MWR-D-22-0037.1.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., 2008: National Hurricane Center forecast verification. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 13A.1, https://ams.confex.com/ams/28Hurricanes/webprogram/Paper137870.html.

  • Gopalakrishnan, S. G., F. Marks, J. A. Zhang, X. Zhang, J.-W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and C. S. Bretherton, 2019: TKE-based moist eddy-diffusivity mass-flux (EDMF) parameterization for vertical turbulent mixing. Wea. Forecasting, 34, 869886, https://doi.org/10.1175/WAF-D-18-0146.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., L. Harris, and S.-J. Lin, 2018: Evaluation of tropical cyclone structure forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419442, https://doi.org/10.1175/WAF-D-17-0140.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., J. A. Zhang, and S. Gopalakrishnan, 2022: Comparison of the performance of the observation-based hybrid EDMF and EDMF-TKE PBL schemes in 2020 tropical cyclone forecasts from the global-nested Hurricane Analysis and Forecast System. Wea. Forecasting, 37, 457476, https://doi.org/10.1175/WAF-D-21-0124.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting Model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, https://doi.org/10.1175/2008MWR2220.1.

    • Search Google Scholar
    • Export Citation
  • Hlywiak, J., and D. S. Nolan, 2022: The evolution of asymmetries in the tropical cyclone boundary layer wind field during landfall. Mon. Wea. Rev., 150, 529549, https://doi.org/10.1175/MWR-D-21-0191.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6ES9, https://doi.org/10.1175/2011BAMS3224.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Search Google Scholar
    • Export Citation
  • Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, https://doi.org/10.1016/j.atmosres.2008.09.022.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009a: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009b: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., and Coauthors, 2009: Advances and challenges at the National Hurricane Center. Wea. Forecasting, 24, 395419, https://doi.org/10.1175/2008WAF2222128.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, https://doi.org/10.1175/2008WAF2222159.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., X. Wu, S. D. Ditchek, V. Tallapragada, and D. Kleist, 2022: Impacts of assimilating additional reconnaissance data on operational GFS tropical cyclone forecasts. Wea. Forecasting, 37, 16151639, https://doi.org/10.1175/WAF-D-22-0058.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Z. Zhong, W. Lu, and Y. Hu, 2014: Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev., 142, 12401249, https://doi.org/10.1175/MWR-D-13-00232.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and C. Snyder, 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, https://doi.org/10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and E. W. Uhlhorn, 2012: Hurricane sea surface inflow angle and an observation-based parametric model. Mon. Wea. Rev., 140, 35873605, https://doi.org/10.1175/MWR-D-11-00339.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 426 426 16
Full Text Views 162 162 13
PDF Downloads 151 151 8

Performance of an Improved TKE-Based Eddy-Diffusivity Mass-Flux (EDMF) PBL Scheme in 2021 Hurricane Forecasts from the Hurricane Analysis and Forecast System

Xiaomin ChenaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
bNorthern Gulf Institute, Mississippi State University, Stennis Space Center, Mississippi

Search for other papers by Xiaomin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9731-6989
,
Andrew HazeltonaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
cCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Andrew Hazelton in
Current site
Google Scholar
PubMed
Close
,
Frank D. MarksaNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
,
Ghassan J. Alaka Jr.aNOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Ghassan J. Alaka Jr. in
Current site
Google Scholar
PubMed
Close
, and
Chunxi ZhangdNOAA/NWS/NCEP Environmental Modeling Center, College Park, College Park, Maryland
eI.M. Systems Group, Inc., College Park, College Park, Maryland

Search for other papers by Chunxi Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Continuous development and evaluation of planetary boundary layer (PBL) parameterizations in hurricane conditions are crucial for improving tropical cyclone (TC) forecasts. A turbulence kinetic energy (TKE)-based eddy-diffusivity mass-flux (EDMF-TKE) PBL scheme, implemented in NOAA’s Hurricane Analysis and Forecast System (HAFS), was recently improved in hurricane conditions using large-eddy simulations. This study evaluates the performance of HAFS TC forecasts with the original (experiment HAFA) and modified EDMF-TKE (experiment HAFY) based on a large sample of cases during the 2021 North Atlantic hurricane season. Results indicate that intensity and structure forecast skill was better overall in HAFY than in HAFA, including during rapid intensification. Composite analyses demonstrate that HAFY produces shallower and stronger boundary layer inflow, especially within 1–3 times the radius of maximum wind (RMW). Stronger inflow and more moisture in the boundary layer contribute to stronger moisture convergence near the RMW. These boundary layer characteristics are consistent with stronger, deeper, and more compact TC vortices in HAFY than in HAFA. Nevertheless, track skill in HAFY is slightly reduced, which is in part attributable to the cross-track error from a few early cycles of Hurricane Henri that exhibited ∼400 n mi (1 n mi = 1.852 km) track error at longer lead times. Sensitivity experiments based on HAFY demonstrate that turning off cumulus schemes notably reduces the track errors of Henri while turning off the deep cumulus scheme reduces the intensity errors. This finding hints at the necessity of unifying the mass fluxes in PBL and cumulus schemes in future model physics development.

Chen’s current affiliation: Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xc0011@uah.edu

Abstract

Continuous development and evaluation of planetary boundary layer (PBL) parameterizations in hurricane conditions are crucial for improving tropical cyclone (TC) forecasts. A turbulence kinetic energy (TKE)-based eddy-diffusivity mass-flux (EDMF-TKE) PBL scheme, implemented in NOAA’s Hurricane Analysis and Forecast System (HAFS), was recently improved in hurricane conditions using large-eddy simulations. This study evaluates the performance of HAFS TC forecasts with the original (experiment HAFA) and modified EDMF-TKE (experiment HAFY) based on a large sample of cases during the 2021 North Atlantic hurricane season. Results indicate that intensity and structure forecast skill was better overall in HAFY than in HAFA, including during rapid intensification. Composite analyses demonstrate that HAFY produces shallower and stronger boundary layer inflow, especially within 1–3 times the radius of maximum wind (RMW). Stronger inflow and more moisture in the boundary layer contribute to stronger moisture convergence near the RMW. These boundary layer characteristics are consistent with stronger, deeper, and more compact TC vortices in HAFY than in HAFA. Nevertheless, track skill in HAFY is slightly reduced, which is in part attributable to the cross-track error from a few early cycles of Hurricane Henri that exhibited ∼400 n mi (1 n mi = 1.852 km) track error at longer lead times. Sensitivity experiments based on HAFY demonstrate that turning off cumulus schemes notably reduces the track errors of Henri while turning off the deep cumulus scheme reduces the intensity errors. This finding hints at the necessity of unifying the mass fluxes in PBL and cumulus schemes in future model physics development.

Chen’s current affiliation: Department of Atmospheric and Earth Science, University of Alabama in Huntsville, Huntsville, Alabama.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xc0011@uah.edu
Save