Sensitivity to Localization Radii for an Ensemble Filter Numerical Weather Prediction System with 30-Second Update

James Taylor aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan

Search for other papers by James Taylor in
Current site
Google Scholar
PubMed
Close
,
Takumi Honda aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan
cFaculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Takumi Honda in
Current site
Google Scholar
PubMed
Close
,
Arata Amemiya aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan

Search for other papers by Arata Amemiya in
Current site
Google Scholar
PubMed
Close
,
Shigenori Otsuka aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan

Search for other papers by Shigenori Otsuka in
Current site
Google Scholar
PubMed
Close
,
Yasumitsu Maejima aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan

Search for other papers by Yasumitsu Maejima in
Current site
Google Scholar
PubMed
Close
, and
Takemasa Miyoshi aRIKEN Center for Computational Science, Kobe, Japan
bRIKEN Cluster for Pioneering Research, Kobe, Japan
cFaculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan

Search for other papers by Takemasa Miyoshi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A sensitivity analysis for the horizontal localization scale is performed for a numerical weather prediction (NWP) system that uses a 30-s update to refresh a 500-m mesh with observations from a new-generation multiparameter phased array weather radar (MP-PAWR). Testing is performed using three case studies of convective weather events that occurred during August–September 2019, with the aim to determine the most suitable scale for short-range forecasting of precipitating convective systems and to better understand model behavior to a rapid update cycle. Results showed that while the model could provide useful skill at lead times up to 30 min, forecasts would consistently overestimate rainfall and were unable to outperform nowcasts performed with a simple advection model. Using a larger localization scale, e.g., 4 km, generated stronger convective and dynamical instability in the analyses that made conditions more favorable for spurious and intense convection to develop in forecasts. It was demonstrated that lowering the localization scale reduced the size of analysis increments during early cycling, limiting the buildup of these conditions. Improved representation of the localized convection in the initial conditions was suggested as an important step to mitigating this issue in the model.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 25 April 2023 to include two project numbers that were missing from the Acknowledgments section when originally published.

Corresponding author: James Taylor, james.taylor@riken.jp

Abstract

A sensitivity analysis for the horizontal localization scale is performed for a numerical weather prediction (NWP) system that uses a 30-s update to refresh a 500-m mesh with observations from a new-generation multiparameter phased array weather radar (MP-PAWR). Testing is performed using three case studies of convective weather events that occurred during August–September 2019, with the aim to determine the most suitable scale for short-range forecasting of precipitating convective systems and to better understand model behavior to a rapid update cycle. Results showed that while the model could provide useful skill at lead times up to 30 min, forecasts would consistently overestimate rainfall and were unable to outperform nowcasts performed with a simple advection model. Using a larger localization scale, e.g., 4 km, generated stronger convective and dynamical instability in the analyses that made conditions more favorable for spurious and intense convection to develop in forecasts. It was demonstrated that lowering the localization scale reduced the size of analysis increments during early cycling, limiting the buildup of these conditions. Improved representation of the localized convection in the initial conditions was suggested as an important step to mitigating this issue in the model.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 25 April 2023 to include two project numbers that were missing from the Acknowledgments section when originally published.

Corresponding author: James Taylor, james.taylor@riken.jp
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multi-case comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292, https://doi.org/10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Amemiya, A., T. Honda, and T. Miyoshi, 2019: Improving the observation operator for the phased array weather radar in the SCALE-LETKF system. SOLA, 16, 611, https://doi.org/10.2151/sola.2020-002.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtstag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor. Climatol., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., C. E. Pierce, and A. Seed, 2006: STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. Quart. J. Roy. Meteor. Soc., 132, 21272155, https://doi.org/10.1256/qj.04.100.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., R. L. Alberty, and D. W. Burgess, 1993: Recording, archiving, and using WSR-88D data. Bull. Amer. Meteor. Soc., 74, 645654, https://doi.org/10.1175/1520-0477(1993)074<0645:RAAUWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dillon, M. E., and Coauthors, 2016: Application of the WRF-LETKF data assimilation system over southern South America: Sensitivity to model physics. Wea. Forecasting, 31, 217236, https://doi.org/10.1175/WAF-D-14-00157.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 May 2003 Oklahoma City supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272294, https://doi.org/10.1175/2010MWR3438.1.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757, https://doi.org/10.1002/qj.49712555417.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and I. Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, https://doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Honda, T., and Coauthors, 2022a: Advantage of 30-s-updating numerical weather prediction with a phased-array weather radar over operational nowcast for a convective precipitation system. Geophys. Res. Lett., 49, e2021GL096927, https://doi.org/10.1029/2021GL096927.

    • Search Google Scholar
    • Export Citation
  • Honda, T., and Coauthors, 2022b: Development of the real-time 30-s-update big data assimilation system for convective rainfall prediction with a phased array weather radar: Description and preliminary evaluation. J. Adv. Model. Earth Syst., 14, e2021MS002823, https://doi.org/10.1029/2021MS002823.

    • Search Google Scholar
    • Export Citation
  • Hubeny, K., 1953: Isotheme Koordinatensysteme und konforme Abbildungen des Rotationsellipsoids. Osterr. Verein f. Vermessungswesen, Sonderheft 13, 216 pp., https://www.ovg.at//static/vgi-sonderhefte/sonderheft1953_13_final_OCR.pdf.

  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Ishikawa, Y., 2020: JIT-DT (Just-In-Time Data Transfer). GitHub, accessed 21 March 2021, https://github.com/yutaka-ishikawa/jit-dt.

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kotsuki, S., K. Kurosawa, S. Otsuka, K. Terasaki, and T. Miyoshi, 2019: Global precipitation forecasts by merging extrapolation-based nowcast and numerical weather prediction with locally optimized weights. Wea. Forecasting, 34, 701714, https://doi.org/10.1175/WAF-D-18-0164.1.

    • Search Google Scholar
    • Export Citation
  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329358, https://doi.org/10.1023/A:1019207923078.

    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., T. Miyoshi, and E. Kalnay, 2016: Assimilation of TRMM multi-satellite precipitation analysis with a low-resolution NCEP global forecast system. Mon. Wea. Rev., 144, 643661, https://doi.org/10.1175/MWR-D-15-0149.1.

    • Search Google Scholar
    • Export Citation
  • Lien, G.-Y., T. Miyoshi, S. Nishizawa, R. Yoshida, H. Yashiro, S. A. Adachi, T. Yamaura, and H. Tomita, 2017: The near-real-time SCALE-LETKF system: A case of the September 2015 Kanto-Tohoku heavy rainfall. SOLA, 13, 16, https://doi.org/10.2151/sola.2017-001.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148172, https://doi.org/10.3402/tellusa.v14i2.9537.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor. Climatol., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maejima, Y., M. Kunii, and T. Miyoshi, 2017: 30-second-update 100-m-mesh data assimilation experiments: A sudden local rain case in Kobe on 11 September 2014. SOLA, 13, 174180, https://doi.org/10.2151/sola.2017-032.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and K. Aranami, 2006: Applying a four-dimensional local ensemble transform Kalman filter (4D-LETKF) to the JMA nonhydrostatic model (NHM). SOLA, 2, 128131, https://doi.org/10.2151/sola.2006-033.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 38413861, https://doi.org/10.1175/2007MWR1873.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and Coauthors, 2016a: Big data assimilation revolutionizing severe weather prediction. Bull. Amer. Meteor. Soc., 97, 13471354, https://doi.org/10.1175/BAMS-D-15-00144.1.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, T., and Coauthors, 2016b: “Big data assimilation” toward post-petascale severe weather prediction: An overview and progress. Proc. IEEE, 104, 21552179, https://doi.org/10.1109/JPROC.2016.2602560.

    • Search Google Scholar
    • Export Citation
  • Nishizawa, S., H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita, 2015: Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev., 8, 33933419, https://doi.org/10.5194/gmd-8-3393-2015.

    • Search Google Scholar
    • Export Citation
  • Otsuka, S., S. Kotsuki, and T. Miyoshi, 2016a: Nowcasting with data assimilation: A case of global satellite mapping of precipitation. Wea. Forecasting, 31, 14091416, https://doi.org/10.1175/WAF-D-16-0039.1.

    • Search Google Scholar
    • Export Citation
  • Otsuka, S., and Coauthors, 2016b: Precipitation nowcasting with three-dimensional space-time extrapolation of dense and frequent phased-array weather radar observations. Wea. Forecasting, 31, 329340, https://doi.org/10.1175/WAF-D-15-0063.1.

    • Search Google Scholar
    • Export Citation
  • Otsuka, S., S. Kotsuki, M. Ohhigashi, and T. Miyoshi, 2019: GSMaP RIKEN Nowcast: Global precipitation nowcasting with data assimilation. J. Meteor. Soc. Japan, 97, 10991117, https://doi.org/10.2151/jmsj.2019-061.

    • Search Google Scholar
    • Export Citation
  • Ott, E., and Coauthors, 2002: Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering. 2002 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract NG71A-06.

  • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415428, https://doi.org/10.3402/tellusa.v56i5.14462.

    • Search Google Scholar
    • Export Citation
  • Rinehart, R. E., and E. T. Garvey, 1978: Three-dimensional storm motion detection by conventional weather radar. Nature, 273, 287289, https://doi.org/10.1038/273287a0.

    • Search Google Scholar
    • Export Citation
  • Saito, K., L. Duc, T. Matsunobu, and T. Kurihana, 2021: Perturbations by the ensemble transform: Data assimilation for atmospheric. Oceanic Hydrol. Appl., 4, 115141.

    • Search Google Scholar
    • Export Citation
  • Sato, Y., S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa, and H. Tomita, 2015: Impacts of cloud microphysics on trade wind cumulus: Which cloud microphysics processes contribute to the diversity in a large eddy simulation? Prog. Earth Planet. Sci., 2, 23, https://doi.org/10.1186/s40645-015-0053-6.

    • Search Google Scholar
    • Export Citation
  • Schraff, C., H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Periáñez, and R. Potthast, 2016: Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Quart. J. Roy. Meteor. Soc., 142, 14531472, https://doi.org/10.1002/qj.2748.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., and T. Nakajima, 2008: A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer, 109, 27792793, https://doi.org/10.1016/j.jqsrt.2008.07.013.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468, https://doi.org/10.1175/MWR-D-10-05053.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2015: Multi-scale EnKF assimilation of radar and conventional observations and ensemble forecasting for a tornadic mesoscale convective system. Mon. Wea. Rev., 143, 10351057, https://doi.org/10.1175/MWR-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, https://doi.org/10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Szunyogh, I., and Coauthors, 2007: The local ensemble Kalman filter and its implementation on the NCEP global model at the University of Maryland. Proc. ECMWF Workshop on Flow Dependent Aspects of Data Assimilation, Reading, United Kingdom, ECMWF, 47–64, https://www.ecmwf.int/en/elibrary/76555-local-ensemble-transform-kalman-filter-and-its-implementation-ncep-global-model.

  • Takahashi, N., and Coauthors, 2019: Development of multi-parameter phased array weather radar (MP-PAWR) and early detection of torrential rainfall and tornado risk. J. Disaster Res., 14, 235247, https://doi.org/10.20965/jdr.2019.p0235.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., M. Sawada, and T. Miyoshi, 2015: Local ensemble transform Kalman filter experiments with the nonhydrostatic icosahedral atmospheric model NICAM. SOLA, 11, 2326, https://doi.org/10.2151/sola.2015-006.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteor. Soc. Japan, 86A, 121142, https://doi.org/10.2151/jmsj.86A.121.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, https://doi.org/10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648, https://doi.org/10.1175/2007MWR2070.1.

    • Search Google Scholar
    • Export Citation
  • Tsai, C.-C., 2014: Improving QPN with an LETKF radar data assimilation system: Typhoon Morakot (2009). Ph.D. thesis, National Central University Taiwan, 85 pp.

  • Ushio, T., T. Wu, and S. Yoshida, 2015: Review of recent progress in lightning and thunderstorm detection techniques in Asia. Atmos. Res., 154, 89102, https://doi.org/10.1016/j.atmosres.2014.10.001.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 30783089, https://doi.org/10.1175/MWR-D-11-00276.1.

    • Search Google Scholar
    • Export Citation
  • Wu, P.-Y., S.-C. Yang, C.-C. Tsai, and H.-W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of heavy rainfall event on 16 June 2008 in Taiwan. Mon. Wea. Rev., 148, 36313652, https://doi.org/10.1175/MWR-D-19-0319.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666, https://doi.org/10.1175/JTECH1835.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and G. Zhang, 2009: Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated data. Quart. J. Roy. Meteor. Soc., 135, 14091423, https://doi.org/10.1002/qj.453.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., S. Nishizawa, H. Yashiro, S. A. Adachi, Y. Sato, T. Yamaura, and H. Tomita, 2017: CONeP: A cost-effective online nesting procedure for regional atmospheric models. Parallel Comput., 65, 2131, https://doi.org/10.1016/j.parco.2017.04.004.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 403 403 29
Full Text Views 194 194 9
PDF Downloads 203 203 9