• Bachmann, K., C. Keil, and M. Weissmann, 2018: Impact of radar data assimilation and orography on predictability of deep convection. Quart. J. Roy. Meteor. Soc., 145, 117130, https://doi.org/10.1002/qj.3412.

    • Search Google Scholar
    • Export Citation
  • Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev., 139, 19721995, https://doi.org/10.1175/2010MWR3595.1.

    • Search Google Scholar
    • Export Citation
  • Berner, J., and Coauthors, 2016: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565588, https://doi.org/10.1175/BAMS-D-15-00268.1.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convection-permitting ensemble. Mon. Wea. Rev., 140, 37063721, https://doi.org/10.1175/MWR-D-12-00031.1.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, P.-L., P.-F. Lin, B. J.-D. Jou, and J. Zhang, 2009: An application of reflectivity climatology in constructing radar hybrid scans over complex terrain. J. Atmos. Oceanic Technol., 26, 13151327, https://doi.org/10.1175/2009JTECHA1162.1.

    • Search Google Scholar
    • Export Citation
  • Chang, P.-L., and Coauthors, 2021: An operational multi-radar multi-sensor QPE system in Taiwan. Bull. Amer. Meteor. Soc., 102, E555E577, https://doi.org/10.1175/BAMS-D-20-0043.1.

    • Search Google Scholar
    • Export Citation
  • Chen, I. H., J. S. Hong, Y. T. Tsai, and C. T. Fong, 2020: Improving afternoon thunderstorm prediction over Taiwan through 3DVAR-based radar and surface data assimilation. Wea. Forecasting, 35, 26032620, https://doi.org/10.1175/WAF-D-20-0037.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A., and Coauthors, 2019: Spring forecasting experiment 2019: Preliminary findings and results. NOAA Hazardous Weather Testbed, NOAA, 77 pp., https://hwt.nssl.noaa.gov/sfe/2019/docs/HWT_SFE_2019_Prelim_Findings_FINAL.pdf.

  • Demuth, J. L., and Coauthors, 2020: Recommendations for developing useful and usable convection-allowing model ensemble information for NWS forecasters. Wea. Forecasting, 35, 13811406, https://doi.org/10.1175/WAF-D-19-0108.1.

    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., 2014: Calibrating ensemble reliability whilst preserving spatial structure. Tellus, 66A, 22662, https://doi.org/10.3402/tellusa.v66.22662.

    • Search Google Scholar
    • Export Citation
  • Frogner, I., A. T. Singleton, M. Ø. Køltzow, and U. Andrae, 2019: Convection‐permitting ensembles: Challenges related to their design and use. Quart. J. Roy. Meteor. Soc., 145, 90106, https://doi.org/10.1002/qj.3525.

    • Search Google Scholar
    • Export Citation
  • García-Ortega, E., J. Lorenzana, A. Merino, S. Fernández-González, L. López, and J. L. Sánchez, 2017: Performance of multiphysics ensembles in convective precipitation events over northeastern Spain. Atmos. Res., 190, 5567, https://doi.org/10.1016/j.atmosres.2017.02.009.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., S. E. Theis, M. Paulat, and Z. B. Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, https://doi.org/10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Golding, B., N. Roberts, G. Leoncini, K. Mylne, and R. Swinbank, 2016: MOGREPS-UK convection-permitting ensemble products for surface water flood forecasting: Rationale and first results. J. Hydrometeor., 17, 13831406, https://doi.org/10.1175/JHM-D-15-0083.1.

    • Search Google Scholar
    • Export Citation
  • Guerra, J. E., P. S. Skinner, A. Clark, M. Flora, B. Matilla, K. Knopfmeier, and A. E. Reinhart, 2022: Quantification of NSSL Warn-on-Forecast System accuracy by storm age using object-based verification. Wea. Forecasting, 37, 19731983, https://doi.org/10.1175/WAF-D-22-0043.1.

    • Search Google Scholar
    • Export Citation
  • Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective‐scale ensemble, MOGREPS‐UK. Quart. J. Roy. Meteor. Soc., 143, 28462861, https://doi.org/10.1002/qj.3135.

    • Search Google Scholar
    • Export Citation
  • Harding, K., 2011: Thunderstorm formation and aviation hazards. NOAA/National Weather Service, 1–4.

  • Harnisch, F., and C. Keil, 2015: Initial conditions for convective-scale ensemble forecasting provided by ensemble data assimilation. Mon. Wea. Rev., 143, 15831600, https://doi.org/10.1175/MWR-D-14-00209.1.

    • Search Google Scholar
    • Export Citation
  • Hermoso, A., V. Homar, and R. S. Plant, 2021: Potential of stochastic methods for improving convection-permitting ensemble forecasts of extreme events over the Western Mediterranean. Atmos. Res., 257, 105571, https://doi.org/10.1016/j.atmosres.2021.105571.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 14 April 2021, https://doi.org/10.24381/cds.adbb2d47.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hirt, M., and G. C. Craig, 2021: A cold pool perturbation scheme to improve convective initiation in convection‐permitting models. Quart. J. Roy. Meteor. Soc., 147, 24292447, https://doi.org/10.1002/qj.4032.

    • Search Google Scholar
    • Export Citation
  • Hirt, M., S. Rasp, U. Blahak, and G. C. Craig, 2019: Stochastic parameterization of processes leading to convective initiation in kilometer-scale models. Mon. Wea. Rev., 147, 39173934, https://doi.org/10.1175/MWR-D-19-0060.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and C. Schär, 2007: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 17831794, https://doi.org/10.1175/BAMS-88-11-1783.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., and Coauthors, 2015: Blending of global and regional analyses with a spatial filter: Application to typhoon prediction over the western North Pacific Ocean. Wea. Forecasting, 30, 754770, https://doi.org/10.1175/WAF-D-14-00047.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, https://doi.org/10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jankov, I., and Coauthors, 2017: A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble. Mon. Wea. Rev., 145, 11611179, https://doi.org/10.1175/MWR-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, S.-Y., J.-S. Hong, and B. J.-D. Jou, 2021: Blend global analyses into the cyclic convective-scale data assimilation system to improve short-term QPF. Terr. Atmos. Oceanic Sci., 32, 633647, https://doi.org/10.3319/TAO.2021.09.13.01.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., and N. Bowler, 2009: On the reliability and calibration of ensemble forecasts. Mon. Wea. Rev., 137, 17171720, https://doi.org/10.1175/2009MWR2715.1.

    • Search Google Scholar
    • Export Citation
  • Kalina, E. A., I. Jankov, T. Alcott, J. Olson, J. Beck, J. Berner, D. Dowell, and C. Alexander, 2021: A progress report on the development of the High-Resolution Rapid Refresh ensemble. Wea. Forecasting, 36, 791804, https://doi.org/10.1175/WAF-D-20-0098.1.

    • Search Google Scholar
    • Export Citation
  • Kühnlein, C., C. Keil, G. C. Craig, and C. Gebhardt, 2014: The impact of downscaled initial condition perturbations on convective‐scale ensemble forecasts of precipitation. Quart. J. Roy. Meteor. Soc., 140, 15521562, https://doi.org/10.1002/qj.2238.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C.-H., J. Berner, J.-S. Hong, C.-T. Fong, and Y.-H. Kuo, 2020: The Taiwan WRF ensemble prediction system: Scientific description, model-error representation and performance results. Asia-Pac. J. Atmos. Sci., 56, 115, https://doi.org/10.1007/s13143-019-00127-8.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 2002: Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, https://doi.org/10.1256/003590002320603584.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, https://doi.org/10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial forecast verification methods: Identifying skillful spatial scales using the fractions skill score. Wea. Forecasting, 25, 343354, https://doi.org/10.1175/2009WAF2222260.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/jmsj.87.895.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peralta, C., Z. B. Bouallègue, S. E. Theis, C. Gebhardt, and M. Buchhold, 2012: Accounting for initial condition uncertainties in COSMO‐DE‐EPS. J. Geophys. Res., 117, D07108, https://doi.org/10.1029/2011JD016581.

    • Search Google Scholar
    • Export Citation
  • Roberts, B., I. L. Jirak, A. J. Clark, S. J. Weiss, and J. S. Kain, 2018: Post-processing and visualization techniques for convection-allowing ensembles. Bull. Amer. Meteor. Soc., 100, 12451258, https://doi.org/10.1175/BAMS-D-18-0041.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., C. S. Schwartz, J. Berner, K. R. Fossell, C. Snyder, J. L. Anderson, and M. L. Weisman, 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, https://doi.org/10.1175/MWR-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2011: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. Tellus, 64A, 11594, https://doi.org/10.3402/tellusa.v64i0.11594.

    • Search Google Scholar
    • Export Citation
  • Schraff, C., H. Reich, A. Rhodin, A. Schomburg, K. Stephan, A. Periáñez, and R. Potthast, 2016: Kilometre‐scale ensemble data assimilation for the COSMO model (KENDA). Quart. J. Roy. Meteor. Soc., 142, 14531472, https://doi.org/10.1002/qj.2748.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and R. A. Sobash, 2017: Generating probabilistic forecasts from convection-allowing ensembles using neighborhood approaches: A review and recommendations. Mon. Wea. Rev., 145, 33973418, https://doi.org/10.1175/MWR-D-16-0400.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., G. S. Romine, R. A. Sobash, K. R. Fossell, and M. L. Weisman, 2018: NCAR’s real-time convection-allowing ensemble project. Bull. Amer. Meteor. Soc., 100, 321343, https://doi.org/10.1175/BAMS-D-17-0297.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast System: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409426, https://doi.org/10.1175/BAMS-D-11-00263.1.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J. Simpson, and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., D. Wu, S. Lang, J. Chern, C. Peters‐Lidard, A. Fridlind, and T. Matsui, 2016: High‐resolution NU‐WRF simulations of a deep convective‐precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 12781305, https://doi.org/10.1002/2015JD023986.

    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., J. Berner, M. Frediani, J. A. Otkin, and S. M. Griffin, 2021: A stochastic parameter perturbation method to represent uncertainty in a microphysics scheme. Mon. Wea. Rev., 149, 14811497, https://doi.org/10.1175/MWR-D-20-0077.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and A. F. Loughe, 1998: The relationship between ensemble spread and ensemble mean skill. Mon. Wea. Rev., 126, 32923302, https://doi.org/10.1175/1520-0493(1998)126<3292:TRBESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, HIRLAM, 49–55.

  • Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, https://doi.org/10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 35793594, https://doi.org/10.1175/JAS4028.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, https://doi.org/10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
  • Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus, 52A, 280299, https://doi.org/10.3402/tellusa.v52i3.12266.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 214 31
Full Text Views 276 276 7
PDF Downloads 272 272 9

Performance of a Convective-Scale Ensemble Prediction System on 2017 Warm-Season Afternoon Thunderstorms over Taiwan

I-Han ChenaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by I-Han Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3610-6793
,
Yi-Jui SuaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Yi-Jui Su in
Current site
Google Scholar
PubMed
Close
,
Hsiao-Wei LaiaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Hsiao-Wei Lai in
Current site
Google Scholar
PubMed
Close
,
Jing-Shan HongaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Jing-Shan Hong in
Current site
Google Scholar
PubMed
Close
,
Chih-Hsin LiaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Chih-Hsin Li in
Current site
Google Scholar
PubMed
Close
,
Pao-Liang ChangaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Pao-Liang Chang in
Current site
Google Scholar
PubMed
Close
, and
Ying-Jhang WuaCentral Weather Bureau, Taipei, Taiwan

Search for other papers by Ying-Jhang Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 16-member convective-scale ensemble prediction system (CEPS) developed at the Central Weather Bureau (CWB) of Taiwan is evaluated for probability forecasts of convective precipitation. To address the issues of limited predictability of convective systems, the CEPS provides short-range forecasts using initial conditions from a rapid-updated ensemble data assimilation system. This study aims to identify the behavior of the CEPS forecasts, especially the impact of different ensemble configurations and forecast lead times. Warm-season afternoon thunderstorms (ATs) from 30 June to 4 July 2017 are selected. Since ATs usually occur between 1300 and 2000 LST, this study compares deterministic and probabilistic quantitative precipitation forecasts (QPFs) launched at 0500, 0800, and 1100 LST. This study demonstrates that initial and boundary perturbations (IBP) are crucial to ensure good spread–skill consistency over the 18-h forecasts. On top of IBP, additional model perturbations have insignificant impacts on upper-air and precipitation forecasts. The deterministic QPFs launched at 1100 LST outperform those launched at 0500 and 0800 LST, likely because the most-recent data assimilation analyses enhance the practical predictability. However, it cannot improve the probabilistic QPFs launched at 1100 LST due to inadequate ensemble spreads resulting from limited error growth time. This study points out the importance of sufficient initial condition uncertainty on short-range probabilistic forecasts to exploit the benefits of rapid-update data assimilation analyses.

Significance Statement

This study aims to understand the behavior of convective-scale short-range probabilistic forecasts in Taiwan and the surrounding area. Taiwan is influenced by diverse weather systems, including typhoons, mei-yu fronts, and local thunderstorms. During the past decade, there has been promising improvement in predicting mesoscale weather systems (e.g., typhoons and mei-yu fronts). However, it is still challenging to provide timely and accurate forecasts for rapid-evolving high-impact convection. This study provides a reference for the designation of convective-scale ensemble prediction systems; in particular, those with a goal to provide short-range probabilistic forecasts. While the findings cannot be extrapolated to all ensemble prediction systems, this study demonstrates that initial and boundary perturbations are the most important factors, while the model perturbation has an insignificant effect. This study suggests that in-depth studies are required to improve the convective-scale initial condition accuracy and uncertainty to provide reliable probabilistic forecasts within short lead times.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing-Shan Hong, rfs14@cwb.gov.tw

Abstract

A 16-member convective-scale ensemble prediction system (CEPS) developed at the Central Weather Bureau (CWB) of Taiwan is evaluated for probability forecasts of convective precipitation. To address the issues of limited predictability of convective systems, the CEPS provides short-range forecasts using initial conditions from a rapid-updated ensemble data assimilation system. This study aims to identify the behavior of the CEPS forecasts, especially the impact of different ensemble configurations and forecast lead times. Warm-season afternoon thunderstorms (ATs) from 30 June to 4 July 2017 are selected. Since ATs usually occur between 1300 and 2000 LST, this study compares deterministic and probabilistic quantitative precipitation forecasts (QPFs) launched at 0500, 0800, and 1100 LST. This study demonstrates that initial and boundary perturbations (IBP) are crucial to ensure good spread–skill consistency over the 18-h forecasts. On top of IBP, additional model perturbations have insignificant impacts on upper-air and precipitation forecasts. The deterministic QPFs launched at 1100 LST outperform those launched at 0500 and 0800 LST, likely because the most-recent data assimilation analyses enhance the practical predictability. However, it cannot improve the probabilistic QPFs launched at 1100 LST due to inadequate ensemble spreads resulting from limited error growth time. This study points out the importance of sufficient initial condition uncertainty on short-range probabilistic forecasts to exploit the benefits of rapid-update data assimilation analyses.

Significance Statement

This study aims to understand the behavior of convective-scale short-range probabilistic forecasts in Taiwan and the surrounding area. Taiwan is influenced by diverse weather systems, including typhoons, mei-yu fronts, and local thunderstorms. During the past decade, there has been promising improvement in predicting mesoscale weather systems (e.g., typhoons and mei-yu fronts). However, it is still challenging to provide timely and accurate forecasts for rapid-evolving high-impact convection. This study provides a reference for the designation of convective-scale ensemble prediction systems; in particular, those with a goal to provide short-range probabilistic forecasts. While the findings cannot be extrapolated to all ensemble prediction systems, this study demonstrates that initial and boundary perturbations are the most important factors, while the model perturbation has an insignificant effect. This study suggests that in-depth studies are required to improve the convective-scale initial condition accuracy and uncertainty to provide reliable probabilistic forecasts within short lead times.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jing-Shan Hong, rfs14@cwb.gov.tw
Save