• Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2016: Investigation of near-storm environments for tornado events and warnings. Wea. Forecasting, 31, 17711790, https://doi.org/10.1175/WAF-D-16-0046.1.

    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2018: Near-storm environments of outbreak and isolated tornadoes. Wea. Forecasting, 33, 13971412, https://doi.org/10.1175/WAF-D-18-0057.1.

    • Search Google Scholar
    • Export Citation
  • Andra, D. L., E. M. Quoetone, and W. F. Bunting, 2002: Warning decision making: The relative roles of conceptual models, technology, strategy, and forecaster expertise on 3 May 1999. Wea. Forecasting, 17, 559566, https://doi.org/10.1175/1520-0434(2002)017<0559:WDMTRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Search Google Scholar
    • Export Citation
  • Bentley, E. S., R. L. Thompson, B. R. Bowers, J. G. Gibbs, and S. E. Nelson, 2021: An analysis of 2016–18 tornadoes and National Weather Service tornado warnings across the contiguous United States. Wea. Forecasting, 36, 19091924, https://doi.org/10.1175/WAF-D-20-0241.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2009: NWS tornado warnings with zero or negative lead times. Wea. Forecasting, 24, 140154, https://doi.org/10.1175/2008WAF2007076.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2010: Tornadoes without NWS warning. Wea. Forecasting, 25, 159172, https://doi.org/10.1175/2009WAF2222270.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and W. Donner, 2013: The tornado warning process: A review of current research, challenges, and opportunities. Bull. Amer. Meteor. Soc., 94, 17151733, https://doi.org/10.1175/BAMS-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., S. E. Nelson, R. L. Thompson, and B. T. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, https://doi.org/10.1175/WAF-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. B. Wilson, M. S. Van Den Broeke, and D. J. Healey, 2022: Scan-by-scan storm-motion deviations for concurrent tornadic and nontornadic supercells. Wea. Forecasting, 37, 749770, https://doi.org/10.1175/WAF-D-21-0153.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., K. L. Berry, D. M. Kingfield, T. Meyer, M. J. Krocak, T. M. Smith, G. Stumpf, and A. Gerard, 2021: The experimental warning program of NOAA’s Hazardous Weather Testbed. Bull. Amer. Meteor. Soc., 102, E2229E2246, https://doi.org/10.1175/BAMS-D-21-0017.1.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., J. M. Kurdzo, B. J. Bennett, M. E. Weber, J. W. Dellicarpini, A. Loconto, and H. Frank, 2022: Impact of WSR-88D intra-volume low-level scans on severe weather warning performance. Wea. Forecasting, 37, 11691189, https://doi.org/10.1175/WAF-D-21-0152.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7 (6), https://ejssm.com/ojs/index.php/site/article/view/42 .

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, E. N. Rasmussen, J. C. Furtado, and B. E. Coffer, 2020: Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments. Mon. Wea. Rev., 148, 41854207, https://doi.org/10.1175/MWR-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T., and Coauthors, 2022: Exploring the watch-to-warning space: Experimental outlook performance during the 2019 spring forecasting experiment in NOAA’s Hazardous Weather Testbed. Wea. Forecasting, 37, 617637, https://doi.org/10.1175/WAF-D-21-0171.1.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and M. M. French, 2022: The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011–20. Wea. Forecasting, 37, 283301, https://doi.org/10.1175/WAF-D-21-0127.1.

    • Search Google Scholar
    • Export Citation
  • Klees, A. M., Y. P. Richardson, P. M. Markowski, C. Weiss, J. M. Wurman, and K. K. Kosiba, 2016: Comparison of the tornadic and nontornadic supercells intercepted by VORTEX2 on 10 June 2010. Mon. Wea. Rev., 144, 32013231, https://doi.org/10.1175/MWR-D-15-0345.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2021: The influence of weather watch type on the quality of tornado warnings and its implications for future forecasting systems. Wea. Forecasting, 36, 16751680, https://doi.org/10.1175/WAF-D-21-0052.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., J. N. Allan, J. T. Ripberger, C. L. Silva, and H. C. Jenkins-Smith, 2021a: An analysis of tornado warning reception and response across time: Leveraging respondent’s confidence and a nocturnal tornado climatology. Wea. Forecasting, 36, 16491660, https://doi.org/10.1175/WAF-D-20-0207.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., M. D. Flournoy, and H. E. Brooks, 2021b: Examining sub-daily tornado warning performance and associated environmental characteristics. Wea. Forecasting, 36, 17791784, https://doi.org/10.1175/WAF-D-21-0097.1.

    • Search Google Scholar
    • Export Citation
  • Lebel, L. J., and P. M. Markowski, 2023: An analysis of the impact of vertical wind shear on convection initiation using large-eddy simulations: Importance of wake entrainment. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-22-0176.1, in press.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2020: What is the intrinsic predictability of tornadic supercell thunderstorms? Mon. Wea. Rev., 148, 31573180, https://doi.org/10.1175/MWR-D-20-0076.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022a: The influence of shear on deep convection initiation. Part I: Theory. J. Atmos. Sci., 79, 16691690, https://doi.org/10.1175/JAS-D-21-0145.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022b: The influence of shear on deep convection initiation. Part II: Simulations. J. Atmos. Sci., 79, 16911711, https://doi.org/10.1175/JAS-D-21-0144.1.

    • Search Google Scholar
    • Export Citation
  • Quoetone, E., J. Boettcher, and C. Spannagle, 2009: How did that happen? A look at factors that go into forecaster warning decisions. Extended Abstracts, 34th Annual Meeting, Norfolk, VA, National Weather Association, https://nwas.org/annual-meeting-events/past-meetings/2009-annual-meeting/.

  • Rotunno, R., and J. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., R. Edwards, and M. Coniglio, 2020: A climatological analysis of ambient deep-tropospheric vertical wind shear impacts upon tornadoes in tropical cyclones. Wea. Forecasting, 35, 20332059, https://doi.org/10.1175/WAF-D-19-0220.1.

    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., M. Coniglio, and R. Edwards, 2021: How does the relationship between ambient deep-tropospheric vertical wind shear and tropical cyclone tornadoes change between coastal and inland environments? Wea. Forecasting, 36, 539566, https://doi.org/10.1175/WAF-D-20-0127.1.

    • Search Google Scholar
    • Export Citation
  • Shafer, C. M., and C. A. Doswell III, 2011: Using kernel density estimation to identify, rank, and classify severe weather outbreak events. Electron. J. Severe Storms Meteor., 6 (2), https://doi.org/10.55599/ejssm.v6i2.29.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast System. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Search Google Scholar
    • Export Citation
  • Trujillo-Falcón, J. E., J. Reedy, K. E. Klockow-McClain, K. L. Berry, G. J. Stumpf, A. V. Bates, and J. G. LaDue, 2022: Creating a communication framework for FACETs: How probabilistic hazard information affected warning operations in NOAA’s Hazardous Weather Testbed. Wea. Climate Soc., 14, 881892, https://doi.org/10.1175/WCAS-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, K. A., B. T. Gallo, P. Skinner, A. Clark, P. Heinselman, and J. J. Choate, 2021: Analysis of end user access of Warn-on-Forecast guidance products during an experimental forecasting task. Wea. Climate Soc., 13, 859874, https://doi.org/10.1175/WCAS-D-20-0175.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 353 353 156
Full Text Views 149 149 74
PDF Downloads 156 156 75

Analyzing Tornado Warning Performance during Individual Storm Life Cycles

Josué U. ChamberlainaDepartment of Meteorology and Climate Science, San Jose State University, San Jose, California

Search for other papers by Josué U. Chamberlain in
Current site
Google Scholar
PubMed
Close
,
Matthew D. FlournoybCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
cNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Matthew D. Flournoy in
Current site
Google Scholar
PubMed
Close
,
Makenzie J. KrocakdUniversity of Oklahoma Institute for Public Policy Research and Analysis, Norman, Oklahoma
bCooperative Institute for Severe and High-Impact Weather Research and Operations, Norman, Oklahoma
eNOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Makenzie J. Krocak in
Current site
Google Scholar
PubMed
Close
,
Harold E. BrookscNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
fSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Harold E. Brooks in
Current site
Google Scholar
PubMed
Close
, and
Alexandra K. Anderson-FreygDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Alexandra K. Anderson-Frey in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms (specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that only produce one tornado. These results are important for understanding how tornado warning performance varies during individual storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) may increase warning confidence for the first tornado produced by each storm.

Significance Statement

In this study, we focus on better understanding real-time tornado warning performance on a storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other words, for storms that produce multiple tornadoes, the first tornado is generally the least likely to be warned in advance; when it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for improving warning performance.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Flournoy’s current affiliation: NOAA/NWS/NCEP Storm Prediction Center and the University of Oklahoma, Norman, Oklahoma.

Corresponding author: Matthew Flournoy, matthew.flournoy@noaa.gov

Abstract

The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms (specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that only produce one tornado. These results are important for understanding how tornado warning performance varies during individual storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) may increase warning confidence for the first tornado produced by each storm.

Significance Statement

In this study, we focus on better understanding real-time tornado warning performance on a storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other words, for storms that produce multiple tornadoes, the first tornado is generally the least likely to be warned in advance; when it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for improving warning performance.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Flournoy’s current affiliation: NOAA/NWS/NCEP Storm Prediction Center and the University of Oklahoma, Norman, Oklahoma.

Corresponding author: Matthew Flournoy, matthew.flournoy@noaa.gov
Save