Pattern Projection Calibrations on Subseasonal Forecasts of Surface Air Temperature over East Asia

Shoupeng Zhu aKey Laboratory of Transportation Meteorology of China Meteorological Administration, Nanjing Joint Institute for Atmospheric Sciences, Nanjing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Shoupeng Zhu in
Current site
Google Scholar
PubMed
Close
,
Ling Zhang bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Ling Zhang in
Current site
Google Scholar
PubMed
Close
,
Hangdong Jiang cCAAC Xiamen Air Traffic Management Station, Xiamen, China

Search for other papers by Hangdong Jiang in
Current site
Google Scholar
PubMed
Close
,
Yang Lyu bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yang Lyu in
Current site
Google Scholar
PubMed
Close
,
Yi Fan bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yi Fan in
Current site
Google Scholar
PubMed
Close
,
Zhun Guo dClimate Change Research Center, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhun Guo in
Current site
Google Scholar
PubMed
Close
, and
Xiefei Zhi bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiefei Zhi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Subseasonal forecasts have recently attracted widespread interest yet remain a challenging issue. A statistical Kalman filter pattern projection method (KFPPM), which absorbs the projection conception of the raw covariance pattern projection (COVPPM) and the adaptive adjustments of the Kalman filter, is proposed to calibrate the single-model forecasts of the daily maximum and minimum temperatures (Tmax and Tmin) for lead times of 8–42 days over East Asia in 2018 derived from the UKMO control (CTL) forecast. The Kalman filter–based gridly calibration (KFGC) is carried out in parallel as a benchmark, which could improve the forecast skills to a certain extent. The COVPPM effectively calibrates the temperature forecasts at the early stage and displays better performances than the CTL and KFGC. However, with the growing lead times, it shows speedily decreasing skills and can no longer produce positive adjustments over the areas outside the plateaus. By contrast, the KFPPM consistently outperforms the other calibrations and reduces the forecast errors by almost 1.0° and 0.5°C for Tmax and Tmin, respectively, both retaining superiorities to the random climatology benchmark till the lead time of 24 days. The optimization of KFPPM maintains throughout the whole range of the subseasonal time scale, showing the most conspicuous improvements distributed over the Tibetan Plateau and its surroundings. Though the postprocessing procedures are more skillful in calibrating Tmax forecasts than Tmin forecasts, the Tmax forecasts are still characterized by lower skills than the latter. Case experiments further demonstrate the abovementioned features and imply the potential capability of KFPPM in improving forecast skills and disaster preventions for extreme temperature events.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ling Zhang, lingzhang@nuist.edu.cn

Abstract

Subseasonal forecasts have recently attracted widespread interest yet remain a challenging issue. A statistical Kalman filter pattern projection method (KFPPM), which absorbs the projection conception of the raw covariance pattern projection (COVPPM) and the adaptive adjustments of the Kalman filter, is proposed to calibrate the single-model forecasts of the daily maximum and minimum temperatures (Tmax and Tmin) for lead times of 8–42 days over East Asia in 2018 derived from the UKMO control (CTL) forecast. The Kalman filter–based gridly calibration (KFGC) is carried out in parallel as a benchmark, which could improve the forecast skills to a certain extent. The COVPPM effectively calibrates the temperature forecasts at the early stage and displays better performances than the CTL and KFGC. However, with the growing lead times, it shows speedily decreasing skills and can no longer produce positive adjustments over the areas outside the plateaus. By contrast, the KFPPM consistently outperforms the other calibrations and reduces the forecast errors by almost 1.0° and 0.5°C for Tmax and Tmin, respectively, both retaining superiorities to the random climatology benchmark till the lead time of 24 days. The optimization of KFPPM maintains throughout the whole range of the subseasonal time scale, showing the most conspicuous improvements distributed over the Tibetan Plateau and its surroundings. Though the postprocessing procedures are more skillful in calibrating Tmax forecasts than Tmin forecasts, the Tmax forecasts are still characterized by lower skills than the latter. Case experiments further demonstrate the abovementioned features and imply the potential capability of KFPPM in improving forecast skills and disaster preventions for extreme temperature events.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ling Zhang, lingzhang@nuist.edu.cn
Save
  • Cheng, W. Y. Y., and W. J. Steenburgh, 2007: Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Wea. Forecasting, 22, 13041318, https://doi.org/10.1175/2007WAF2006084.1.

    • Search Google Scholar
    • Export Citation
  • Chou, J. F., 1989: Predictability of the atmosphere. Adv. Atmos. Sci., 6, 335346, https://doi.org/10.1007/BF02661539.

  • CMA, 2020: Yearbook of Meteorological Disasters in China 2019 (in Chinese). China Meteorological Press, 224 pp.

  • Cui, B., Z. Toth, Y. Zhu, and D. Hou, 2012: Bias correction for global ensemble forecast. Wea. Forecasting, 27, 396410, https://doi.org/10.1175/WAF-D-11-00011.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1987: Better bootstrap confidence intervals. J. Amer. Stat. Assoc., 82, 171185, https://doi.org/10.1080/01621459.1987.10478410.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., K. Fan, and B. Tian, 2016: Has the prediction of the South China Sea summer monsoon improved since the late 1970s? J. Meteor. Res., 30, 833852, https://doi.org/10.1007/s13351-016-6052-8.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., S. Zhu, L. Wang, and X. Wang, 2022: Subseasonal dynamical prediction of South China Sea summer monsoon. Atmos. Res., 278, 106347, https://doi.org/10.1016/j.atmosres.2022.106347.

    • Search Google Scholar
    • Export Citation
  • Ge, F., and Coauthors, 2019: Risks of precipitation extremes over Southeast Asia: Does 1.5°C or 2°C global warming make a difference? Environ. Res. Lett., 14, 044015, https://doi.org/10.1088/1748-9326/aaff7e.

    • Search Google Scholar
    • Export Citation
  • Ge, F., S. Zhu, H. Luo, X. Zhi, and H. Wang, 2021: Future changes in precipitation extremes over Southeast Asia: Insights from CMIP6 multi-model ensemble. Environ. Res. Lett., 16, 024013, https://doi.org/10.1088/1748-9326/abd7ad.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, https://doi.org/10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hannak, L., P. Knippertz, A. H. Fink, A. Kniffka, and G. Pante, 2017: Why do global climate models struggle to represent low-level clouds in the West African summer monsoon? J. Climate, 30, 16651687, https://doi.org/10.1175/JCLI-D-16-0451.1.

    • Search Google Scholar
    • Export Citation
  • He, C., X. Zhi, Q. You, B. Song, and K. Fraedrich, 2015: Multi-model ensemble forecasts of tropical cyclones in 2010 and 2011 based on the Kalman filter method. Meteor. Atmos. Phys., 127, 467479, https://doi.org/10.1007/s00703-015-0377-1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., T. Li, Y.-C. Lin, M.-M. Lu, and J.-Y. Lee, 2012: A spatial-temporal projection method for seasonal prediction of spring rainfall in northern Taiwan. J. Meteor. Soc. Japan, 90, 179190, https://doi.org/10.2151/jmsj.2012-202.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 3–32.

  • Ji, L., X. Zhi, S. Zhu, and K. Fraedrich, 2019: Probabilistic precipitation forecasting over East Asia using Bayesian model averaging. Wea. Forecasting, 34, 377392, https://doi.org/10.1175/WAF-D-18-0093.1.

    • Search Google Scholar
    • Export Citation
  • Jie, W., T. Wu, J. Wang, W. Li, and T. Polivka, 2015: Using a deterministic time-lagged ensemble forecast with a probabilistic threshold for improving 6–15 day summer precipitation prediction in China. Atmos. Res., 156, 142159, https://doi.org/10.1016/j.atmosres.2015.01.004.

    • Search Google Scholar
    • Export Citation
  • Kang, H., C. Zhu, Z. Zou, and R. Zhang, 2011: Statistical downscaling of pattern projection using multi-model output variables as predictors. Acta Meteor. Sin., 25, 293302, https://doi.org/10.1007/s13351-011-0305-3.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., Y.-G. Ham, and A. A. Scaife, 2014: Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction. J. Climate, 27, 51485162, https://doi.org/10.1175/JCLI-D-13-00519.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., E. K. M. Chang, and M. Zhang, 2015: Statistical–dynamical seasonal forecast for tropical cyclones affecting New York State. Wea. Forecasting, 30, 295307, https://doi.org/10.1175/WAF-D-14-00089.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, https://doi.org/10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Klein, W. H., B. M. Lewis, and I. Enger, 1959: Objective prediction of five-day mean temperatures during winter. J. Atmos. Sci., 16, 672682, https://doi.org/10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., 2019: Predictability of weather and climate. Earth Space Sci., 6, 10431056, https://doi.org/10.1029/2019EA000586.

  • Krishnamurti, T. N., C. M. Kishtawal, Z. Zhang, T. LaRow, D. Bachiochi, E. Williford, S. Gadgil, and S. Surendran, 2000: Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 13, 41964216, https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., V. Kumar, A. Simon, A. Bhardwaj, T. Ghosh, and R. Ross, 2016: A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes. Rev. Geophys., 54, 336377, https://doi.org/10.1002/2015RG000513.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-Y. Lee, and I.-S. Kang, 2007: Global sea surface temperature prediction using a multimodel ensemble. Mon. Wea. Rev., 135, 32393247, https://doi.org/10.1175/MWR3458.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-Y. Lee, and I.-S. Kang, 2008: Systematic error correction of dynamical seasonal prediction of sea surface temperature using a stepwise pattern project method. Mon. Wea. Rev., 136, 35013512, https://doi.org/10.1175/2008MWR2272.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21A, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34A, 505513, https://doi.org/10.3402/tellusa.v34i6.10836.

    • Search Google Scholar
    • Export Citation
  • Lyu, Y., X. Zhi, S. Zhu, Y. Fan, and M. Pan, 2021: Statistical calibrations of surface air temperature forecasts over East Asia using pattern projection methods. Wea. Forecasting, 36, 16611674, https://doi.org/10.1175/WAF-D-21-0043.1.

    • Search Google Scholar
    • Export Citation
  • Lyu, Y., S. Zhu, X. Zhi, F. Dong, C. Zhu, L. Ji, and Y. Fan, 2022: Subseasonal forecasts of precipitation over maritime continent in boreal summer and the sources of predictability. Front. Earth Sci., 10, 970791, https://doi.org/10.3389/feart.2022.970791.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and Coauthors, 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, https://doi.org/10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., P. M. Ruti, and M. Rixen, 2018: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Climate Atmos. Sci., 1, 4, https://doi.org/10.1038/s41612-018-0014-z.

    • Search Google Scholar
    • Export Citation
  • Martín, M. L., F. Valero, A. Pascual, J. Sanz, and L. Frias, 2014: Analysis of wind power productions by means of an analog model. Atmos. Res., 143, 238249, https://doi.org/10.1016/j.atmosres.2014.02.012.

    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2014: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. 2nd ed. Springer, 454 pp.

  • Najafi, R., and M. R. Hessami Kermani, 2017: Uncertainty modeling of statistical downscaling to assess climate change impacts on temperature and precipitation. Water Resour. Manage., 31, 18431858, https://doi.org/10.1007/s11269-017-1615-8.

    • Search Google Scholar
    • Export Citation
  • Pan, M., X. Zhi, Z. Liu, S. Zhu, Y. Lyu, and D. Zhu, 2022: Statistical calibrations to improve the 2–5-year prediction skill for SST over the North Atlantic. Meteor. Atmos. Phys., 134, 52, https://doi.org/10.1007/s00703-022-00888-4.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Search Google Scholar
    • Export Citation
  • Pelosi, A., H. Medina, J. Van den Bergh, S. Vannitsem, and G. B. Chirico, 2017: Adaptive Kalman filtering for postprocessing ensemble numerical weather predictions. Mon. Wea. Rev., 145, 48374854, https://doi.org/10.1175/MWR-D-17-0084.1.

    • Search Google Scholar
    • Export Citation
  • Phakula, S., W. A. Landman, C. J. Engelbrecht, and T. Makgoale, 2020: Forecast skill of minimum and maximum temperatures on subseasonal-to-seasonal timescales over South Africa. Earth Space Sci., 7, e2019EA000697, https://doi.org/10.1029/2019EA000697.

    • Search Google Scholar
    • Export Citation
  • Porson, A. N., and Coauthors, 2020: Recent upgrades to the Met Office convective-scale ensemble: An hourly time-lagged 5-day ensemble. Quart. J. Roy. Meteor. Soc., 146, 32453265, https://doi.org/10.1002/qj.3844.

    • Search Google Scholar
    • Export Citation
  • Shin, D. W., and T. N. Krishnamurti, 2003: Short‐to medium‐range superensemble precipitation forecasts using satellite products: 1. Deterministic forecasting. J. Geophys. Res., 108, 8383, https://doi.org/10.1029/2001JD001510.

    • Search Google Scholar
    • Export Citation
  • Slingo, J., and T. Palmer, 2011: Uncertainty in weather and climate prediction. Philos. Trans. Roy. Soc., A369, 47514767, https://doi.org/10.1098/rsta.2011.0161.

    • Search Google Scholar
    • Export Citation
  • Somerville, R. C. J., 1987: The predictability of weather and climate. Climatic Change, 11, 239246, https://doi.org/10.1007/BF00138802.

    • Search Google Scholar
    • Export Citation
  • Srivastava, P., M. Sharan, and M. Kumar, 2021: A note on surface layer parameterizations in the weather research and forecast model. Dyn. Atmos. Oceans, 96, 101259, https://doi.org/10.1016/j.dynatmoce.2021.101259.

    • Search Google Scholar
    • Export Citation
  • Sun, X., F. Ge, Y. Fan, S. Zhu, and Q. Chen, 2022: Will population exposure to heat extremes intensify over Southeast Asia in a warmer world? Environ. Res. Lett., 17, 044006, https://doi.org/10.1088/1748-9326/ac48b6.

    • Search Google Scholar
    • Export Citation
  • van der Plas, E., M. Schmeits, N. Hooijman, and K. Kok, 2017: A comparative verification of high-resolution precipitation forecasts using model output statistics. Mon. Wea. Rev., 145, 40374054, https://doi.org/10.1175/MWR-D-16-0256.1.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., 2017: Predictability of large-scale atmospheric motions: Lyapunov exponents and error dynamics. Chaos, 27, 032101, https://doi.org/10.1063/1.4979042.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., D. S. Wilks, and J. W. Messner, 2018: Statistical Postprocessing of Ensemble Forecasts. Elsevier, 347 pp.

  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • van Straaten, C., K. Whan, D. Coumou, B. van den Hurk, and M. Schmeits, 2020: The influence of aggregation and statistical post-processing on the subseasonal predictability of European temperatures. Quart. J. Roy. Meteor. Soc., 146, 26542670, https://doi.org/10.1002/qj.3810.

    • Search Google Scholar
    • Export Citation
  • Veldkamp, S., K. Whan, S. Dirksen, and M. Schmeits, 2021: Statistical postprocessing of wind speed forecasts using convolutional neural networks. Mon. Wea. Rev., 149, 11411152, https://doi.org/10.1175/MWR-D-20-0219.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and A. W. Robertson, 2018: The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. npj Climate Atmos. Sci., 1, 3, https://doi.org/10.1038/s41612-018-0013-0.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office global coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Search Google Scholar
    • Export Citation
  • WMO, 2021: State of the global climate 2020. Tech. Rep. WMO-1264, 56 pp., https://library.wmo.int/doc_num.php?explnum_id=10618.

  • Yang, D., J. Panida, and M. W. Wilfred, 2012: Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy, 86, 35313543, https://doi.org/10.1016/j.solener.2012.07.029.

    • Search Google Scholar
    • Export Citation
  • You, Q., Z. Jiang, L. Kong, Z. Wu, Y. Bao, S. Kang, and N. Pepin, 2017: A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dyn., 48, 39753989, https://doi.org/10.1007/s00382-016-3315-0.

    • Search Google Scholar
    • Export Citation
  • You, Q., and Coauthors, 2020: Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev., 210, 103349, https://doi.org/10.1016/j.earscirev.2020.103349.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., C. Lu, J. A. McGinley, P. J. Schultz, B. D. Jamison, L. Wharton, and C. J. Anderson, 2009: Evaluation of short-range quantitative precipitation forecasts from a time-lagged multimodel ensemble. Wea. Forecasting, 24, 1838, https://doi.org/10.1175/2008WAF2007053.1.

    • Search Google Scholar
    • Export Citation
  • Zamora, R. J., E. G. Dutton, M. Trainer, S. A. McKeen, J. M. Wilczak, and Y.-T. Hou, 2005: The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon. Wea. Rev., 133, 783792, https://doi.org/10.1175/MWR2886.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., J. Chen, X. Zhi, and Y. Wang, 2015a: A comparison of ETKF and downscaling in a regional ensemble prediction system. Atmosphere, 6, 341360, https://doi.org/10.3390/atmos6030341.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., X. Zhi, J. Chen, Y. Wang, and Y. Wang, 2015b: Study of the modification of multi-model ensemble schemes for tropical cyclone forecasts. J. Trop. Meteor., 21, 389399.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. Feng, H. Li, Y. Zhu, X. Zhi, and F. Zhang, 2021: Unified ensemble mean forecasting of tropical cyclones based on the feature-oriented mean method. Wea. Forecasting, 36, 19451959, https://doi.org/10.1175/WAF-D-21-0062.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., F. Sielmann, K. Fraedrich, X. Zhu, and X. Zhi, 2015: Variability of winter extreme precipitation in Southeast China: Contributions of SST anomalies. Climate Dyn., 45, 25572570, https://doi.org/10.1007/s00382-015-2492-6.

    • Search Google Scholar
    • Export Citation
  • Zheng, L., Y. Zhang, and A. Huang, 2020: Sub-seasonal prediction of the 2008 extreme snowstorms over South China. Climate Dyn., 55, 19791994, https://doi.org/10.1007/s00382-020-05361-9.

    • Search Google Scholar
    • Export Citation
  • Zhi, X., H. Qi, Y. Bai, and C. Lin, 2012: A comparison of three kinds of multimodel ensemble forecast techniques based on the TIGGE data. J. Meteor. Res., 26, 4151, https://doi.org/10.1007/s13351-012-0104-5.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., F. Ge, Y. Fan, L. Zhang, F. Sielmann, K. Fraedrich, and X. Zhi, 2020a: Conspicuous temperature extremes over Southeast Asia: Seasonal variations under 1.5°C and 2°C global warming. Climatic Change, 160, 343360, https://doi.org/10.1007/s10584-019-02640-1.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., and Coauthors, 2020b: Seasonal temperature response over the Indochina Peninsula to a worst-case high emission forcing: A study with the regionally coupled model ROM. Theor. Appl. Climatol., 142, 613622, https://doi.org/10.1007/s00704-020-03345-7.

    • Search Google Scholar
    • Export Citation
  • Zhu, S., X. Zhi, F. Ge, Y. Fan, L. Zhang, and J. Gao, 2021: Subseasonal forecast of surface air temperature using superensemble approaches: Experiments over Northeast Asia for 2018. Wea. Forecasting, 36, 3951, https://doi.org/10.1175/WAF-D-20-0096.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., Z. Toth, R. Wobus, D. Richardson, and K. Mylne, 2002: The economic value of ensemble-based weather forecasts. Bull. Amer. Meteor. Soc., 83, 7384, https://doi.org/10.1175/1520-0477(2002)083<0073:TEVOEB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., X. Zhou, M. Peña, W. Li, C. Melhauser, and D. Hou, 2017: Impact of sea surface temperature forcing on weeks 3 and 4 forecast skill in the NCEP global ensemble forecasting system. Wea. Forecasting, 32, 21592174, https://doi.org/10.1175/WAF-D-17-0093.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. Climate Dyn., 48, 16331645, https://doi.org/10.1007/s00382-016-3164-x.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and T. Li, 2018: Extended-range forecasting of Chinese summer surface air temperature and heat waves. Climate Dyn., 50, 20072021, https://doi.org/10.1007/s00382-017-3733-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 757 757 57
Full Text Views 220 220 5
PDF Downloads 182 182 7