The Impact of Tropical SST Biases on the S2S Precipitation Forecast Skill over the Contiguous United States in the UFS Global Coupled Model

Hedanqiu Bai aDepartment of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Hedanqiu Bai in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3310-2770
,
Bin Li bIMSG at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Bin Li in
Current site
Google Scholar
PubMed
Close
,
Avichal Mehra cNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Avichal Mehra in
Current site
Google Scholar
PubMed
Close
,
Jessica Meixner cNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Jessica Meixner in
Current site
Google Scholar
PubMed
Close
,
Shrinivas Moorthi cNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Shrinivas Moorthi in
Current site
Google Scholar
PubMed
Close
,
Sulagna Ray dSRG at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Sulagna Ray in
Current site
Google Scholar
PubMed
Close
,
Lydia Stefanova bIMSG at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Lydia Stefanova in
Current site
Google Scholar
PubMed
Close
,
Jiande Wang bIMSG at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Jiande Wang in
Current site
Google Scholar
PubMed
Close
,
Jun Wang cNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Jun Wang in
Current site
Google Scholar
PubMed
Close
,
Denise Worthen bIMSG at NOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Denise Worthen in
Current site
Google Scholar
PubMed
Close
,
Fanglin Yang cNOAA/NCEP/EMC, College Park, Maryland

Search for other papers by Fanglin Yang in
Current site
Google Scholar
PubMed
Close
, and
Cristiana Stan aDepartment of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, Virginia

Search for other papers by Cristiana Stan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work investigates the impact of tropical sea surface temperature (SST) biases on the Subseasonal to Seasonal Prediction project (S2S) precipitation forecast skill over the contiguous United States (CONUS) in the Unified Forecast System (UFS) coupled model Prototype 6. Boreal summer (June–September) and winter (December–March) for 2011–18 were analyzed. The impact of tropical west Pacific (WP) and tropical North Atlantic (TNA) warm SST biases is evaluated using multivariate linear regression analysis. A warm SST bias over the WP influences the CONUS precipitation remotely through a Rossby wave train in both seasons. During boreal winter, a warm SST bias over the TNA partly affects the magnitude of the North Atlantic subtropical high (NASH)’s center, which in the reforecasts is weaker than in reanalysis. The weaker NASH favors an enhanced moisture transport from the Gulf of Mexico, leading to increased precipitation over the Southeast United States. Compared to reanalysis, during boreal summer, the NASH’s center is also weaker and in addition, its position is displaced to the northeast. The displacement further affects the CONUS summer precipitation. The SST biases over the two tropical regions and their impacts become stronger as the forecast lead increases from week 1 to 4. These tropical biases explain up to 10% of the CONUS precipitation biases on the S2S time scale.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hedanqiu Bai, hbai2@gmu.edu

Abstract

This work investigates the impact of tropical sea surface temperature (SST) biases on the Subseasonal to Seasonal Prediction project (S2S) precipitation forecast skill over the contiguous United States (CONUS) in the Unified Forecast System (UFS) coupled model Prototype 6. Boreal summer (June–September) and winter (December–March) for 2011–18 were analyzed. The impact of tropical west Pacific (WP) and tropical North Atlantic (TNA) warm SST biases is evaluated using multivariate linear regression analysis. A warm SST bias over the WP influences the CONUS precipitation remotely through a Rossby wave train in both seasons. During boreal winter, a warm SST bias over the TNA partly affects the magnitude of the North Atlantic subtropical high (NASH)’s center, which in the reforecasts is weaker than in reanalysis. The weaker NASH favors an enhanced moisture transport from the Gulf of Mexico, leading to increased precipitation over the Southeast United States. Compared to reanalysis, during boreal summer, the NASH’s center is also weaker and in addition, its position is displaced to the northeast. The displacement further affects the CONUS summer precipitation. The SST biases over the two tropical regions and their impacts become stronger as the forecast lead increases from week 1 to 4. These tropical biases explain up to 10% of the CONUS precipitation biases on the S2S time scale.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hedanqiu Bai, hbai2@gmu.edu
Save
  • Adcroft, A., and Coauthors, 2019: The GFDL global ocean and sea ice model OM4. 0: Model description and simulation features. J. Adv. Model. Earth Syst., 11, 31673211, https://doi.org/10.1029/2019MS001726.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., B. P. Kirtman, and L. S. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 46214640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., Z. Kuang, and E. Tziperman, 2013: Enhanced MJO-like variability at high SST. J. Climate, 26, 9881001, https://doi.org/10.1175/JCLI-D-12-00272.1.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., L. P. Van Roekel, L. R. Leung, and M. Veneziani, 2021: Subtropical eastern North Pacific SST bias in earth system models. J. Geophys. Res. Oceans, 126, e2021JC017359, https://doi.org/10.1029/2021JC017359.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., Z. Janjić, and K. Mitchell, 1997: Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteor., 85, 391421, https://doi.org/10.1023/A:1000531001463.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, https://doi.org/10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., B. P. Hayden, D. A. Gay, W. L. Phillips, and G. V. Jones, 1997: The North Atlantic subtropical anticyclone. J. Climate, 10, 728744, https://doi.org/10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Diem, J. E., 2006: Synoptic-scale controls of summer precipitation in the southeastern United States. J. Climate, 19, 613621, https://doi.org/10.1175/JCLI3645.1.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gamble, D. W., D. B. Parnell, and S. Curtis, 2008: Spatial variability of the Caribbean mid-summer drought and relation to North Atlantic high circulation. Int. J. Climatol., 28, 343350, https://doi.org/10.1002/joc.1600.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, and T. DelSole, 2011: Land surface impacts on subseasonal and seasonal predictability. Geophys. Res. Lett., 38, L24812, https://doi.org/10.1029/2011GL049945.

    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2013: A two-way nested global-regional dynamical core on the cubed-sphere grid. Mon. Wea. Rev., 141, 283306, https://doi.org/10.1175/MWR-D-11-00201.1.

    • Search Google Scholar
    • Export Citation
  • Hasanean, H. M., 2004: Variability of the North Atlantic subtropical high and associations with tropical sea-surface temperature. Int. J. Climatol., 24, 945957, https://doi.org/10.1002/joc.1042.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., B. Huang, Y.-T. Hou, W. Wang, F. Yang, C. Stan, and E. K. Schneider, 2011: Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system. Climate Dyn., 36, 17951811, https://doi.org/10.1007/s00382-010-0797-z.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., D. C. Collins, S. B. Feldstein, M. L. L’Heureux, and E. E. Riddle, 2014: Skillful wintertime North American temperature forecasts out to 4 weeks based on the state of ENSO and the MJO. Wea. Forecasting, 29, 2338, https://doi.org/10.1175/WAF-D-13-00102.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., L. Krishnamurthy, A. T. Wittenberg, B. Xiang, G. A. Vecchi, S. B. Kapnick, and S. Pascale, 2020: The impact of sea surface temperature biases on North American precipitation in a high-resolution climate model. J. Climate, 33, 24272447, https://doi.org/10.1175/JCLI-D-19-0417.1.

    • Search Google Scholar
    • Export Citation
  • Katz, R. W., M. B. Parlange, and C. Tebaldi, 2003: Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. Climatic Change, 60, 189216, https://doi.org/10.1023/A:1026054330406.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and C. Stan, 2022: Prediction of extreme events in precipitation and temperature over CONUS during boreal summer in the UFS coupled model. Climate Dyn., 59, 109125, https://doi.org/10.1007/s00382-021-06120-0.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and Coauthors, 2021: Sources of subseasonal predictability over CONUS during boreal summer. J. Climate, 34, 32733294, https://doi.org/10.1175/JCLI-D-20-0586.1.

    • Search Google Scholar
    • Export Citation
  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 17651780, https://doi.org/10.1175/JCLI-D-13-00337.1.

    • Search Google Scholar
    • Export Citation
  • Li, L., W. Li, and Y. Kushnir, 2012: Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern U.S. summer precipitation. Climate Dyn., 39, 14011412, https://doi.org/10.1007/s00382-011-1214-y.

    • Search Google Scholar
    • Export Citation
  • Lin, H., R. Mo, F. Vitart, and C. Stan, 2019: Eastern Canada flooding 2017 and its subseasonal predictions. Atmos.–Ocean, 57, 195207, https://doi.org/10.1080/07055900.2018.1547679.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction, 2019: The Global Forecast System (GFS)—Global Spectral Model (GSM). NOAA, accessed 1 March 2022, https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs/documentation.php.

  • Nieto Ferreira, R., and T. M. Rickenbach, 2020: Effects of the North Atlantic subtropical high on summertime precipitation organization in the southeast United States. Int. J. Climatol., 40, 59876001, https://doi.org/10.1002/joc.6561.

    • Search Google Scholar
    • Export Citation
  • Nigam, S., and S. C. Chan, 2009: On the summertime strengthening of the Northern Hemisphere Pacific sea level pressure anticyclone. J. Climate, 22, 11741192, https://doi.org/10.1175/2008JCLI2322.1.

    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Search Google Scholar
    • Export Citation
  • Rawlings, J. O., S. G. Pantula, and D. A. Dickey, 1998: Applied Regression Analysis: A Research Tool. 2nd ed. Springer, 660 pp.

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A., and F. Vitart, Eds., 2018: Sub-seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting. 1st ed. Elsevier, 585 pp.

  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647651, https://doi.org/10.1038/s41586-019-1764-4.

    • Search Google Scholar
    • Export Citation
  • Sabin, T. P., C. A. Babu, and P. V. Joseph, 2013: SST–convection relation over tropical oceans. Int. J. Climatol., 33, 14241435, https://doi.org/10.1002/joc.3522.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Siqueira, L., and B. P. Kirtman, 2016: Atlantic near‐term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett., 43, 39643972, https://doi.org/10.1002/2016GL068694.

    • Search Google Scholar
    • Export Citation
  • Stan, C., 2018: The role of SST variability on the simulation of MJO. Climate Dyn., 51, 29432964, https://doi.org/10.1007/s00382-017-4058-2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and B. P. Kirtman, 2008: The influence of atmospheric noise and uncertainty in ocean initial conditions on the limit of predictability in a coupled GCM. J. Climate, 21, 34873503, https://doi.org/10.1175/2007JCLI2071.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., M. Khairoutdinov, C. A. DeMott, V. Krishnamurthy, D. M. Straus, D. A. Randall, J. L. Kinter III, and J. Shukla, 2010: An ocean-atmosphere climate simulation with an embedded cloud resolving model. Geophys. Res. Lett., 37, L01702, https://doi.org/10.1029/2009GL040822.

    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Search Google Scholar
    • Export Citation
  • Stan, C., and Coauthors, 2023: The impact of tropical Pacific SST biases on the S2S forecast skill over North America in the UFS global coupled model. J. Climate, 36, 24392456, https://doi.org/10.1175/JCLI-D-22-0196.1.

    • Search Google Scholar
    • Export Citation
  • Stefanova, L., and Coauthors, 2022: Description and results from UFS coupled prototypes for future global, ensemble and seasonal forecasts at NCEP. NOAA/NCEP Office Note 510, 201 pp., https://doi.org/10.25923/knxm-kz26.

  • Strobach, E. J., 2021: Single column model evaluations of mixing length formulations and constraints for the sa-TKE-EDMF scheme. NOAA/NCEP Office Note 504, 28 pp., https://doi.org/10.25923/0sv0-4916.

  • Strobach, E. J., 2022: A single-column model evaluation of mixing length formulations and constraints for the sa-TKE-EDMF planetary boundary layer parameterization. Wea. Forecasting, 37, 18051828, https://doi.org/10.1175/WAF-D-21-0059.1.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A. C., and Coauthors, 2019: Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Front. Mar. Sci., 6, 427, https://doi.org/10.3389/fmars.2019.00427.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsartsali, E. E., and Coauthors, 2022: Impact of resolution on the atmosphere–ocean coupling along the Gulf Stream in global high resolution models. Climate Dyn., 58, 33173333, https://doi.org/10.1007/s00382-021-06098-9.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Lee, and D. B. Enfield, 2007: Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J. Climate, 20, 50215040, https://doi.org/10.1175/JCLI4304.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 50815101, https://doi.org/10.1175/JCLI-D-19-0865.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., M. Chen, and W. Shi, 2010: CPC unified gauge-based analysis of global daily precipitation. Preprints, 24th Conf. on Hydrology, Atlanta, GA, Amer. Meteor. Soc., 2.3A, https://ams.confex.com/ams/90annual/techprogram/paper_163676.htm.

  • Yang, F., A. Kumar, W. Wang, H.-M. H. Juang, and M. Kanamitsu, 2001: Snow albedo feedback and seasonal climate variability over North America. J. Climate, 14, 42454248, https://doi.org/10.1175/1520-0442(2001)014<4245:SAFASC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 1993: Large-scale variability of atmospheric deep convection in relation to sea surface temperature in the tropics. J. Climate, 6, 18981913, https://doi.org/10.1175/1520-0442(1993)006<1898:LSVOAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., B. Kirtman, L. Siqueira, B. Xiang, J. Infanti, and N. Perlin, 2022: Decadal variability of southeast U.S. rainfall in an eddying global coupled model. Geophys. Res. Lett., 49, e2021GL096709, https://doi.org/10.1029/2021GL096709.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., L. Harris, J.-H. Chen, K. Gao, B. Xiang, M. Tong, J. J. Huff, and M. Morin, 2022: Improving global weather prediction in GFDL SHiELD through an upgraded GFDL microphysics scheme. J. Adv. Model. Earth Syst., 14, e2021MS002971, https://doi.org/10.1029/2021MS002971.

    • Search Google Scholar
    • Export Citation
  • Zhu, X., and C. Stan, 2015: Projection of summer precipitation over the southeastern United States in the superparameterized CCSM4. J. Climate, 28, 80528066, https://doi.org/10.1175/JCLI-D-14-00765.1.

    • Search Google Scholar
    • Export Citation
  • Zorzetto, E., and L. Li, 2021: Impacts of the North Atlantic subtropical high on daily summer precipitation over the conterminous United States. J. Hydrometeor., 22, 16971712, https://doi.org/10.1175/JHM-D-20-0242.1.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., J. Redemann, J. Haywood, R. Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Amer. Meteor. Soc., 97, 11311135, https://doi.org/10.1175/BAMS-D-15-00082.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 446 446 44
Full Text Views 272 272 15
PDF Downloads 229 229 9