The WRF-Based Incremental Analysis Updates and Its Implementation in an Hourly Cycling Data Assimilation System

Min Chen aInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China
bChina Meteorological Administration Urban Meteorology Key Laboratory, Beijing, China

Search for other papers by Min Chen in
Current site
Google Scholar
PubMed
Close
,
Xiang-Yu Huang aInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China
bChina Meteorological Administration Urban Meteorology Key Laboratory, Beijing, China

Search for other papers by Xiang-Yu Huang in
Current site
Google Scholar
PubMed
Close
, and
Wei Wang cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An incremental analysis update (IAU) scheme is successfully implemented into a WRF/WRFDA-based hourly cycling data assimilation system with the goal to reduce the imbalance introduced by the high-frequency intermittent data assimilation, especially when radar data are included. With the application of IAU, the analysis increment is smoothly introduced into the model integration over a time window centered at the analysis time. As in digital filter initialization (DFI), the IAU scheme is able to limit large shocks in the early part of a model forecast. Compared to DFI, IAU does better in hydrometeor spinup and produces more continuous precipitation forecasts from cycle to cycle. The run with IAU is shown to improve the precipitation forecast skills (10+% for CSI scores) compared to the regular cycling forecasts without IAU. The data assimilation system with IAU is also able to accept more observations due to balanced first-guess fields. Comparable results are obtained in IAU tests when the time-varying weights are used versus constant weights. Because of its better property, the IAU with the time-varying weights is implemented in the operational system.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Chen, mchen@ium.cn

Abstract

An incremental analysis update (IAU) scheme is successfully implemented into a WRF/WRFDA-based hourly cycling data assimilation system with the goal to reduce the imbalance introduced by the high-frequency intermittent data assimilation, especially when radar data are included. With the application of IAU, the analysis increment is smoothly introduced into the model integration over a time window centered at the analysis time. As in digital filter initialization (DFI), the IAU scheme is able to limit large shocks in the early part of a model forecast. Compared to DFI, IAU does better in hydrometeor spinup and produces more continuous precipitation forecasts from cycle to cycle. The run with IAU is shown to improve the precipitation forecast skills (10+% for CSI scores) compared to the regular cycling forecasts without IAU. The data assimilation system with IAU is also able to accept more observations due to balanced first-guess fields. Comparable results are obtained in IAU tests when the time-varying weights are used versus constant weights. Because of its better property, the IAU with the time-varying weights is implemented in the operational system.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Min Chen, mchen@ium.cn
Save
  • Bao, J. W., and R. M. Errico, 1997: An adjoint examination of a nudging method for data assimilation. Mon. Wea. Rev., 125, 13551373, https://doi.org/10.1175/1520-0493(1997)125<1355:AAEOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, https://doi.org/10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clayton, A., 2003: Incremental Analysis Update (IAU) scheme. Unified Model Documentation Paper 31, Met Office, 20 pp.

  • Daley, R., 1993: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Fan, S., H. Wang, M. Chen, and H. Gao, 2013: Study of the data assimilation of radar reflectivity with the WRF 3D-Var. Acta Meteor. Sin., 71, 527537, https://doi.org/10.11676/qxxb2013.032.

    • Search Google Scholar
    • Export Citation
  • Ha, S., C. Snyder, W. C. Skamarock, J. Anderson, and N. Collins, 2017: Ensemble Kalman filter data assimilation for the Model for Prediction Across Scales (MPAS). Mon. Wea. Rev., 145, 46734692, https://doi.org/10.1175/MWR-D-17-0145.1.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., and Coauthors, 2019: SINGV–The convective-scale numerical weather prediction system for Singapore. ASEAN J. Sci. Technol. Devel., 36, 8190.

    • Search Google Scholar
    • Export Citation
  • Jiang, J., Z. Xiao, J. Wang, and J. Song, 2014: Sequential method with incremental analysis update to retrieve leaf area index from time series MODIS reflectance data. Remote Sens., 6, 91949212, https://doi.org/10.3390/rs6109194.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., R. C. Balgovind, and B. Katz, 1988: Use of satellite radiometric imagery data for improvement in the analysis of divergent wind in the tropics. Mon. Wea. Rev., 116, 866883, https://doi.org/10.1175/1520-0493(1988)116<0866:UOSRID>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-S., Y.-H. Kuo, D. M. Barker, and E. Lim, 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 13891404, https://doi.org/10.1175/MWR3129.1.

    • Search Google Scholar
    • Export Citation
  • Lei, L., and J. S. Whitaker, 2016: A four-dimensional incremental analysis update for the ensemble Kalman filter. Mon. Wea. Rev., 144, 26052621, https://doi.org/10.1175/MWR-D-15-0246.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A. C., and Coauthors, 2000: The Met. Office global three‐dimensional variational data assimilation scheme. Quart. J. Roy. Meteor. Soc., 126, 29913012, https://doi.org/10.1002/qj.49712657002.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1997: The Dolph–Chebyshev window: A simple optimal filter. Mon. Wea. Rev., 125, 655660, https://doi.org/10.1175/1520-0493(1997)125<0655:TDCWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model, with application to normal-mode initialization. Contrib. Atmos. Phys., 50, 253271.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian seasonal to interannual prediction system. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Polavarapu, S., S. Ren, A. M. Clayton, D. Sankey, and Y. Rochon, 2004: On the relationship between incremental analysis updating and incremental digital filtering. Mon. Wea. Rev., 132, 24952502, https://doi.org/10.1175/1520-0493(2004)132<2495:OTRBIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Puri, K., 1985: Sensitivity of low-latitude velocity potential field in a numerical weather prediction model to initial conditions, initialization and physical processes. Mon. Wea. Rev., 113, 449466, https://doi.org/10.1175/1520-0493(1985)113<0449:SOLLVP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay-El, Y., P. Alpert, and A. D. Silva, 2000: Preliminary estimation of horizontal fluxes of cloud liquid water in relation to subtropical moisture budget studies employing ISCCP, SSMI, and GEOS1/DAS data sets. J. Geophys. Res., 105, 18 06718 089, https://doi.org/10.1029/1999JD901200.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Stratman, D. R., and K. A. Brewster, 2017: Sensitivities of 1-km forecasts of 24 May 2011 tornadic supercells to microphysics parameterizations. Mon. Wea. Rev., 145, 26972721, https://doi.org/10.1175/MWR-D-16-0282.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., M. Chen, and Y. Chen, 2022: Impact of combined assimilation of wind profiler and Doppler radar data on a convective-scale cycling forecasting system. Mon. Wea. Rev., 150, 431450, https://doi.org/10.1175/MWR-D-20-0383.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, https://doi.org/10.1175/JAMC-D-12-0120.1.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., S. Fan, M. Chen, J. Shi, J. Zhong, and X. Zhang, 2019: An assessment of satellite radiance data assimilation in RMAPS. Remote Sens., 11, 54, https://doi.org/10.3390/rs11010054.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., V. Tallapragada, F. Weng, J. Sippel, and Z. Ma, 2015: Use of incremental analysis updates in 4D-Var data assimilation. Adv. Atmos. Sci., 32, 15751582, https://doi.org/10.1007/s00376-015-5041-7.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., R. Todling, J. Guo, S. E. Cohn, I. M. Navon, and Y. Yang, 2003: The GEOS-3 retrospective data assimilation system: The 6-hour lag case. Mon. Wea. Rev., 131, 21292150, https://doi.org/10.1175/1520-0493(2003)131<2129:TGRDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 650 650 22
Full Text Views 276 276 9
PDF Downloads 274 274 9