Biases and Skill of Four Two-Moment Bulk Microphysics Schemes in Convection-Allowing Forecasts for the 2018 Hazardous Weather Testbed Spring Forecasting Experiment Period

Marcus Johnson aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Marcus Johnson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9449-6371
,
Ming Xue aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Youngsun Jung aCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
bSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Youngsun Jung in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A proof-of-concept systematic evaluation of convective hazards is applied to short-term (1–6 h) forecasts using the Morrison, National Severe Storms Laboratory (NSSL), Predicted Particle Properties (P3), and Thompson two-moment microphysics schemes for the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (HWT SFE) period (hereafter “MORR,” “NSSL,” “P3,” and “THOM” experiments, respectively). Four convective line cases are highlighted to elaborate on relative experiment biases/skill. Composite reflectivity and 1-h accumulated precipitation are examined to determine storm coverage/precipitation biases/skill utilizing point-based verification with a neighborhood. Simulated 1–6-km updraft helicity and observed 3–6-km azimuthal shear and MESH are examined to consider simulated rotation and hail core prediction with object-based scores. Over the full season, MORR displays little overall storm coverage bias relative to NSSL, P3, and THOM underprediction. The equitable threat score (ETS) and fractions skill score (FSS) of P3 are lower than the other experiments. P3 and THOM underpredict convective regions with intense reflectivity relative to MORR and NSSL overprediction. All experiments underpredict precipitation amounts. P3 light precipitation FSS is lower than other experiments. Rotation object verification exhibits sensitivity to microphysics experiments, as microphysics has an indirect influence on storm dynamics. While P3 has the largest hail object underprediction, all experiments grossly overpredict the number of hail objects in convective line cases despite forecast objects defined with the same product (MESH) and threshold as observations. The importance of microphysics ice parameterization and ongoing scheme updates highlight the need to apply this verification framework to optimal/updated schemes before optimizing ensemble design.

Jung’s current affiliation: Office of Science and Technology Integration, Silver Spring, Maryland.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu

Abstract

A proof-of-concept systematic evaluation of convective hazards is applied to short-term (1–6 h) forecasts using the Morrison, National Severe Storms Laboratory (NSSL), Predicted Particle Properties (P3), and Thompson two-moment microphysics schemes for the 2018 NOAA Hazardous Weather Testbed Spring Forecasting Experiment (HWT SFE) period (hereafter “MORR,” “NSSL,” “P3,” and “THOM” experiments, respectively). Four convective line cases are highlighted to elaborate on relative experiment biases/skill. Composite reflectivity and 1-h accumulated precipitation are examined to determine storm coverage/precipitation biases/skill utilizing point-based verification with a neighborhood. Simulated 1–6-km updraft helicity and observed 3–6-km azimuthal shear and MESH are examined to consider simulated rotation and hail core prediction with object-based scores. Over the full season, MORR displays little overall storm coverage bias relative to NSSL, P3, and THOM underprediction. The equitable threat score (ETS) and fractions skill score (FSS) of P3 are lower than the other experiments. P3 and THOM underpredict convective regions with intense reflectivity relative to MORR and NSSL overprediction. All experiments underpredict precipitation amounts. P3 light precipitation FSS is lower than other experiments. Rotation object verification exhibits sensitivity to microphysics experiments, as microphysics has an indirect influence on storm dynamics. While P3 has the largest hail object underprediction, all experiments grossly overpredict the number of hail objects in convective line cases despite forecast objects defined with the same product (MESH) and threshold as observations. The importance of microphysics ice parameterization and ongoing scheme updates highlight the need to apply this verification framework to optimal/updated schemes before optimizing ensemble design.

Jung’s current affiliation: Office of Science and Technology Integration, Silver Spring, Maryland.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu
Save
  • Ben Bouallègue, Z., and S. E. Theis, 2014: Spatial techniques applied to precipitation ensemble forecasts: From verification results to probabilistic products. Meteor. Appl., 21, 922929, https://doi.org/10.1002/met.1435.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., G. A. Grell, J. M. Brown, T. G. Smirnova, and R. Bleck, 2004a: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, https://doi.org/10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004b: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., J. M. Brown, and T. G. Smirnova, 2016a: Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. Wea. Forecasting, 31, 609619, https://doi.org/10.1175/WAF-D-15-0136.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016b: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, B., and Coauthors, 2021: The Model Evaluation Tools (MET): More than a decade of community-supported forecast verification. Bull. Amer. Meteor. Soc., 102, E782E807, https://doi.org/10.1175/BAMS-D-19-0093.1.

    • Search Google Scholar
    • Export Citation
  • Cholette, M., H. Morrison, J. A. Milbrandt, and J. M. Thériault, 2019: Parameterization of the bulk liquid fraction on mixed-phase particles in the Predicted Particle Properties (P3) scheme: Description and idealized simulations. J. Atmos. Sci., 76, 561582, https://doi.org/10.1175/JAS-D-18-0278.1.

    • Search Google Scholar
    • Export Citation
  • Cholette, M., J. A. Milbrandt, H. Morrison, D. Paquin-Ricard, and D. Jacques, 2023: Combining triple-moment ice with prognostic liquid fraction in the P3 microphysics scheme: Impacts on a simulated squall line. J. Adv. Model. Earth Syst., 15, e2022MS003328, https://doi.org/10.1029/2022MS003328.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, https://doi.org/10.1175/2010WAF2222404.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2018: The Community Leveraged Unified Ensemble (CLUE) in the 2016 NOAA/Hazardous Weather Testbed Spring Forecasting Experiment. Bull. Amer. Meteor. Soc., 99, 14331448, https://doi.org/10.1175/BAMS-D-16-0309.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, and R. Bullock, 2006: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C., B. Brown, R. Bullock, and J. Halley-Gotway, 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC spring program. Wea. Forecasting, 24, 12521267, https://doi.org/10.1175/2009WAF2222241.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2017: Cloud‐resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Search Google Scholar
    • Export Citation
  • Flora, M. L., P. S. Skinner, C. K. Potvin, A. E. Reinhart, T. A. Jones, N. Yussouf, and K. Knopfmeier, 2019: Object-based verification of short-term, storm-scale probabilistic mesocyclone guidance from an experimental Warn-on-Forecast system. Wea. Forecasting, 34, 17211739, https://doi.org/10.1175/WAF-D-19-0094.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hou, T., H. Lei, Z. Hu, J. Yang, and X. Li, 2020: Simulations of microphysics and precipitation in a stratiform cloud case over northern China: Comparison of two microphysics schemes. Adv. Atmos. Sci., 37, 117129, https://doi.org/10.1007/s00376-019-8257-0.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., G. Thompson, K. Ikeda, and S. Tessendorf, 2023: Improving the representation of hail in the Thompson microphysics scheme. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-21-0319.1, in press.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and X. Wang, 2017: Design and implementation of a GSI-based convection-allowing ensemble data assimilation and forecast system for the PECAN field experiment. Part I: Optimal configurations for nocturnal convection prediction using retrospective cases. Wea. Forecasting, 32, 289315, https://doi.org/10.1175/WAF-D-16-0102.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, M., 2022: Deterministic and ensemble forecasts. Harvard Dataverse, https://doi.org/10.7910/DVN/X74UQJ.

  • Johnson, M., Y. Jung, D. T. Dawson II, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971996, https://doi.org/10.1175/MWR-D-15-0233.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, M., Y. Jung, J. A. Milbrandt, H. Morrison, and M. Xue, 2019: Effects of the representation of rimed ice in bulk microphysics schemes on polarimetric signatures. Mon. Wea. Rev., 147, 37853810, https://doi.org/10.1175/MWR-D-18-0398.1.

    • Search Google Scholar
    • Export Citation
  • Jouan, C., J. A. Milbrandt, P. A. Vaillancourt, F. Chosson, and H. Morrison, 2020: Adaptation of the Predicted Particles Properties (P3) microphysics scheme for large-scale numerical weather prediction. Wea. Forecasting, 35, 25412565, https://doi.org/10.1175/WAF-D-20-0111.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, https://doi.org/10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Keil, C., and G. C. Craig, 2009: A displacement and amplitude score employing an optical flow technique. Wea. Forecasting, 24, 12971308, https://doi.org/10.1175/2009WAF2222247.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., 2018: 2018 CAPS Spring Forecast Experiment program plan. NOAA/NWS/SPC, 29 pp.

  • Labriola, J., Y. Jung, C. Liu, and M. Xue, 2021: Evaluating forecast performance and sensitivity to the GSI EnKF data assimilation configuration for the 28–29 May 2017 mesoscale convective system case. Wea. Forecasting, 36, 127146, https://doi.org/10.1175/WAF-D-20-0071.1.

    • Search Google Scholar
    • Export Citation
  • Loken, E. D., A. J. Clark, M. Xue, and F. Kong, 2019: Spread and skill in mixed- and single-physics convection-allowing ensembles. Wea. Forecasting, 34, 305330, https://doi.org/10.1175/WAF-D-18-0078.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136, https://doi.org/10.1175/JAS3816.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995, https://doi.org/10.1175/JAS-D-15-0204.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., S. Bélair, M. Faucher, M. Vallée, M. L. Carrera, and A. Glazer, 2016: The pan-Canadian high resolution (2.5 km) deterministic prediction system. Wea. Forecasting, 31, 17911816, https://doi.org/10.1175/WAF-D-16-0035.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., H. Morrison, D. T. Dawson II, and M. Paukert, 2021: A triple-moment representation of ice in the Predicted Particle Properties (P3) microphysics scheme. J. Atmos. Sci., 78, 439458, https://doi.org/10.1175/JAS-D-20-0084.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Search Google Scholar
    • Export Citation
  • Naeger, A. R., B. A. Colle, N. Zhou, and A. Molthan, 2020: Evaluating warm and cold rain processes in cloud microphysical schemes using OLYMPEX field measurements. Mon. Wea. Rev., 148, 21632190, https://doi.org/10.1175/MWR-D-19-0092.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Paukert, M., J. Fan, P. J. Rasch, H. Morrison, J. A. Milbrandt, J. Shpund, and A. Khain, 2019: Three-moment representation of rain in a bulk microphysics model. J. Adv. Model. Earth Syst., 11, 257277, https://doi.org/10.1029/2018MS001512.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT Spring Forecasting Experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and G. Zhang, 2014: The analysis and prediction of microphysical states and polarimetric radar variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, https://doi.org/10.1175/MWR-D-13-00042.1.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, N. A. Snook, and G. Zhang, 2017a: Ensemble probabilistic prediction of a mesoscale convective system and associated polarimetric radar variables using single-moment and double-moment microphysics schemes and EnKF radar data assimilation. Mon. Wea. Rev., 145, 22572279, https://doi.org/10.1175/MWR-D-16-0162.1.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., M. Xue, Y. Jung, G. Zhang, and F. Kong, 2017b: Simulation of polarimetric radar variables from 2013 CAPS spring experiment storm-scale ensemble forecasts and evaluation of microphysics schemes. Mon. Wea. Rev., 145, 4973, https://doi.org/10.1175/MWR-D-15-0415.1.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, https://doi.org/10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., 2017: A comparison of methods used to populate neighborhood-based contingency tables for high-resolution forecast verification. Wea. Forecasting, 32, 733741, https://doi.org/10.1175/WAF-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Skinner, P. S., L. J. Wicker, D. M. Wheatley, and K. H. Knopfmeier, 2016: Application of two spatial verification methods to ensemble forecasts of low-level rotation. Wea. Forecasting, 31, 713735, https://doi.org/10.1175/WAF-D-15-0129.1.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., and Coauthors, 2018: Object-based verification of a prototype Warn-on-Forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N., F. Kong, K. A. Brewster, M. Xue, K. W. Thomas, T. A. Supinie, S. Perfater, and B. Albright, 2019: Evaluation of convection-permitting precipitation forecast products using WRF, NMMB, and FV3 for the 2016–2017 NOAA hydrometeorology testbed flash flood and intense rainfall experiments. Wea. Forecasting, 34, 781804, https://doi.org/10.1175/WAF-D-18-0155.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, https://doi.org/10.1175/WAF-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale Warn-on-Forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with Warn-on-Forecast. Atmos. Res., 123, 216, https://doi.org/10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2013: The role of cloud microphysics parameterization in the simulation of mesoscale convective system clouds and precipitation in the tropical western Pacific. J. Atmos. Sci., 70, 11041128, https://doi.org/10.1175/JAS-D-12-0104.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Wang, 2017: Direct assimilation of radar reflectivity without tangent linear and adjoint of the nonlinear observation operator in the GSI-based EnVar system: Methodology and experiment with the 8 May 2003 Oklahoma City tornadic supercell. Mon. Wea. Rev., 145, 14471471, https://doi.org/10.1175/MWR-D-16-0231.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., N. Yussouf, and D. J. Stensrud, 2014: Ensemble Kalman filter analyses and forecasts of a severe mesoscale convective system using different choices of microphysics schemes. Mon. Wea. Rev., 142, 32433263, https://doi.org/10.1175/MWR-D-13-00260.1.

    • Search Google Scholar
    • Export Citation
  • Witt, A., M. D. Eilts, G. J. Stumpf, E. DeWayne Mitchell, J. T. Johnson, and K. W. Thomas, 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, https://doi.org/10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 4666, https://doi.org/10.1175/JTECH1835.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2007: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2007 Spring Experiment. 22nd Conf. on Weather Analysis and Forecasting/18th Conf. on Numerical Weather Prediction, Park City, UT, Amer. Meteor. Soc., 3B.1, https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_124587.htm.

  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment. 24th Conf. on Several Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2, https://ams.confex.com/ams/24SLS/techprogram/paper_142036.htm.

  • Yu, B., K. Zhu, M. Xue, and B. Zhou, 2020: Using new neighborhood-based intensity-scale verification metrics to evaluate WRF precipitation forecasts at 4 and 12 km grid spacings. Atmos. Res., 246, 105117, https://doi.org/10.1016/j.atmosres.2020.105117.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., E. R. Mansell, L. J. Wicker, D. M. Wheatley, and D. J. Stensrud, 2013: The ensemble Kalman filter analyses and forecasts of the 8 May 2003 Oklahoma City tornadic supercell storm using single- and double-moment microphysics schemes. Mon. Wea. Rev., 141, 33883412, https://doi.org/10.1175/MWR-D-12-00237.1.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Storm-scale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. Mon. Wea. Rev., 143, 30443066, https://doi.org/10.1175/MWR-D-14-00268.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Coauthors, 2019: How well does an FV3-based model predict precipitation at a convection-allowing resolution? Results from CAPS forecasts for the 2018 NOAA Hazardous Weather Testbed with different physics combinations. Geophys. Res. Lett., 46, 35233531, https://doi.org/10.1029/2018GL081702.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 571 571 24
Full Text Views 298 298 17
PDF Downloads 224 224 15