Right-Moving Supercell Tornadogenesis during Interaction with a Left-Moving Supercell’s Rear-Flank Outflow

Roger Edwards aNWS Storm Prediction Center, Norman, Oklahoma

Search for other papers by Roger Edwards in
Current site
Google Scholar
PubMed
Close
and
Richard L. Thompson aNWS Storm Prediction Center, Norman, Oklahoma

Search for other papers by Richard L. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On the local afternoon of 29 May 2012, a long-lived, right-moving (RM) supercell formed over northwestern Oklahoma and turned roughly southeastward. For >3 h, as it moved toward the Oklahoma City, Oklahoma, metro area, this supercell remained nontornadic and visually high-based, producing a nearly tornadic gustnado and a swath of significantly severe, sometimes giant hail up to 5 in. (12.7 cm) in diameter. Meanwhile, a left-moving (LM) supercell formed over southwestern Oklahoma about 100 mi (161 km) south-southwest of the RM storm, and moved northeastward, with a rear-flank gust front that became well defined on radar imagery as the LM storm approached southern and central parts of the metro. The authors, who had been observing the RM supercell in the field since genesis, surmised its potential future interaction with the LM storm’s trailing gust front about 1 h beforehand. We repositioned to near the gust front’s extrapolated collision point with the RM mesocyclone, in anticipation of maximized tornado potential, then witnessed a small tornado from the RM mesocyclone immediately following its interception of the boundary. Synchronized radar and photographic images of this remarkable sequence are presented and discussed in context of more recent findings on tornadic supercell–boundary interactions, with implications for operational utility.

Significance Statement

Supercells—well-organized, rotating thunderstorms mainly found in midlatitudes—commonly produce the largest hail, along with damaging gusts and most tornadoes. In radar imagery and photographs, we show the characteristics and merger of two supercell types: left-moving and right-moving, with respect to winds aloft. As the left-moving storm’s trailing gust front interacted with the right-mover’s mesocyclone, the latter strengthened quickly, soon producing a tornado. Observed evolution of these storms supports idealized numerical and conceptual models for supercell behavior and interactions with storm-scale boundaries, and may be useful in short-fused tornado forecast and warning operations.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roger Edwards, roger.edwards@noaa.gov

Abstract

On the local afternoon of 29 May 2012, a long-lived, right-moving (RM) supercell formed over northwestern Oklahoma and turned roughly southeastward. For >3 h, as it moved toward the Oklahoma City, Oklahoma, metro area, this supercell remained nontornadic and visually high-based, producing a nearly tornadic gustnado and a swath of significantly severe, sometimes giant hail up to 5 in. (12.7 cm) in diameter. Meanwhile, a left-moving (LM) supercell formed over southwestern Oklahoma about 100 mi (161 km) south-southwest of the RM storm, and moved northeastward, with a rear-flank gust front that became well defined on radar imagery as the LM storm approached southern and central parts of the metro. The authors, who had been observing the RM supercell in the field since genesis, surmised its potential future interaction with the LM storm’s trailing gust front about 1 h beforehand. We repositioned to near the gust front’s extrapolated collision point with the RM mesocyclone, in anticipation of maximized tornado potential, then witnessed a small tornado from the RM mesocyclone immediately following its interception of the boundary. Synchronized radar and photographic images of this remarkable sequence are presented and discussed in context of more recent findings on tornadic supercell–boundary interactions, with implications for operational utility.

Significance Statement

Supercells—well-organized, rotating thunderstorms mainly found in midlatitudes—commonly produce the largest hail, along with damaging gusts and most tornadoes. In radar imagery and photographs, we show the characteristics and merger of two supercell types: left-moving and right-moving, with respect to winds aloft. As the left-moving storm’s trailing gust front interacted with the right-mover’s mesocyclone, the latter strengthened quickly, soon producing a tornado. Observed evolution of these storms supports idealized numerical and conceptual models for supercell behavior and interactions with storm-scale boundaries, and may be useful in short-fused tornado forecast and warning operations.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roger Edwards, roger.edwards@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 80.229 MB)
Save
  • Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) field campaign. Bull. Amer. Meteor. Soc., 96, 12811309, https://doi.org/10.1175/BAMS-D-13-00290.1.

    • Search Google Scholar
    • Export Citation
  • Beatty, K., E. N. Rasmussen, and J. M. Straka, 2008: The supercell spectrum. Part I: A review of research related to supercell precipitation morphology. Electron. J. Severe Storms Meteor., 3 (4), https://doi.org/10.55599/ejssm.v3i4.17.

    • Search Google Scholar
    • Export Citation
  • Beck, J., and C. Weiss, 2013: An assessment of low-level baroclinity and vorticity within a simulated supercell. Mon. Wea. Rev., 141, 649669, https://doi.org/10.1175/MWR-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Blair, S. F., D. R. Deroche, J. M. Boustead, J. W. Leighton, B. L. Barjenbruch, and W. P. Gargan, 2011: A radar-based assessment of the detectability of giant hail. Electron. J. Severe Storms Meteor., 6 (7), https://doi.org/10.55599/ejssm.v6i7.34.

    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, https://doi.org/10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., D. A. Barber, R. L. Thompson, R. Edwards, and J. M. Garner, 2014: Choosing a universal mean wind for supercell motion prediction. J. Oper. Meteor., 2, 115129, https://doi.org/10.15191/nwajom.2014.0211.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., C. L. Ziegler, and M. I. Biggerstaff, 2019: Creating a more realistic idealized supercell thunderstorm evolution via incorporation of base-state environmental variability. Mon. Wea. Rev., 147, 41774198, https://doi.org/10.1175/MWR-D-18-0447.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1985: The operational meteorology of convective weather. Volume II: Storm scale analysis. NOAA Tech. Memo. ERL ES6-15, 250 pp., https://repository.library.noaa.gov/view/noaa/11215.

  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, https://doi.org/10.1016/j.atmosres.2008.11.003.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and S. J. Hodanish, 2006: Photographic documentation and environmental analysis of an intense, anticyclonic supercell on the Colorado Plains. Mon. Wea. Rev., 134, 37533763, https://doi.org/10.1175/MWR3296.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., R. L. Thompson, and J. G. LaDue, 2000: Initiation of Storm A (3 May 1999) along a possible horizontal convective roll. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., P1.1, https://ams.confex.com/ams/Sept2000/webprogram/Paper16310.html.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, https://doi.org/10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., G. W. Carbin, and S. F. Corfidi, 2015: Overview of the Storm Prediction Center. Proc. 13th History Symp., Phoenix, AZ, Amer. Meteor. Soc., 1.1, https://ams.confex.com/ams/95Annual/webprogram/Paper266329.html.

  • Fischer, J., and J. M. L. Dahl, 2023: Supercell-external storms and boundaries acting as catalysts for tornadogenesis. Mon. Wea. Rev., 151, 2338, https://doi.org/10.1175/MWR-D-22-0026.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., M. D. Flournoy, and A. W. Lyza, 2023: Comments on “A climatology of cell mergers with supercells and their association with mesocyclone evolution” and “The influence of cell mergers on supercell characteristics and tornado evolution on 27–28 April 2011.” Mon. Wea. Rev., 151, 25412545, https://doi.org/10.1175/MWR-D-23-0120.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., A. W. Lyza, M. A. Satrio, M. R. Diedrichsen, M. C. Coniglio, and S. Waugh, 2022: A climatology of cell mergers with supercells and their association with mesocyclone evolution. Mon. Wea. Rev., 150, 451461, https://doi.org/10.1175/MWR-D-21-0204.1.

    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Search Google Scholar
    • Export Citation
  • Hastings, R., and Y. Richardson, 2016: Long-term morphological changes in simulated supercells following mergers with nascent supercells in directionally varying shear. Mon. Wea. Rev., 144, 471499, https://doi.org/10.1175/MWR-D-15-0193.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., B. F. Jewett, and R. B. Wilhelmson, 2006: The 19 April 1996 Illinois tornado outbreak. Part II: Cell mergers and associated tornado incidence. Wea. Forecasting, 21, 449464, https://doi.org/10.1175/WAF943.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, https://doi.org/10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and M. J. Bunkers, 2005: Observations of a severe, left-moving supercell on 4 May 2003. Wea. Forecasting, 20, 1522, https://doi.org/10.1175/WAF-830.1.

    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., and M. D. Flournoy, 2023: The influence of cell mergers on supercell characteristics and tornado evolution on 27–28 April 2011. Mon. Wea. Rev., 151, 15511569, https://doi.org/10.1175/MWR-D-22-0189.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, https://doi.org/10.1175/2010WAF2222368.1.

    • Search Google Scholar
    • Export Citation
  • Rothfusz, L. P., R. Schneider, D. Novak, K. Klockow-McClain, A. E. Gerard, C. Karstens, G. J. Stumpf, and T. M. Smith, 2018: FACETs: A proposed next-generation paradigm for high-impact weather forecasting. Bull. Amer. Meteor. Soc., 99, 20252043, https://doi.org/10.1175/BAMS-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 6.11, https://ams.confex.com/ams/older/99annual/abstracts/1360.htm.

  • Schultz, D. M., 2010: How to research and write effective case studies in meteorology. Electron. J. Severe Storms Meteor., 5 (2), https://doi.org/10.55599/ejssm.v5i2.22.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., P. L. Heinselman, and L. J. Wicker, 2015: Impacts of a storm merger on the 24 May 2011 El Reno, Oklahoma, tornadic supercell. Wea. Forecasting, 30, 501524, https://doi.org/10.1175/WAF-D-14-00164.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, S. M., C. L. Ziegler, D. R. MacGorman, S. E. Fredrickson, D. W. Kennedy, and W. D. Rust, 2015: A balloonborne particle size, imaging, and velocity probe for in situ microphysical measurements. J. Atmos. Oceanic Technol., 32, 15621580, https://doi.org/10.1175/JTECH-D-14-00216.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, R. M. Wakimoto, and N. A. Cook, 1997: Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics. Mon. Wea. Rev., 125, 505526, https://doi.org/10.1175/1520-0493(1997)125<0505:HCRDTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., T. M. Weckwerth, J. Vivekanandan, R. M. Wakimoto, and R. W. Russell, 1994: Boundary layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. J. Atmos. Oceanic Technol., 11, 11841206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an Enhanced Fujita scale (EF-scale), revision 2. Wind Science and Engineering Center Rep., Texas Tech University, 111 pp., https://www.spc.noaa.gov/efscale/ef-ttu.pdf.

All Time Past Year Past 30 Days
Abstract Views 1354 1162 342
Full Text Views 305 241 10
PDF Downloads 346 265 3