Impacts of Sampling and Storm-Motion Estimates on RUC/RAP-Based Discriminations of Nontornadic and Tornadic Supercell Environments

Michael C. Coniglio aNOAA/National Severe Storms Laboratory, Norman, Oklahoma
cSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Michael C. Coniglio in
Current site
Google Scholar
PubMed
Close
and
Richard L. Thompson bNOAA/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Richard L. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study explores reasons for differences in discriminations of nontornadic and tornadic supercell environments between a recent study of field project (FP) radiosonde observations and RUC/RAP-based studies. Two differences are explored: 1) differences in the relative skill between near-ground and deeper-layer storm-relative helicity (SRH) and 2) differences in skill for storm-relative winds (SRWs) seen in observed soundings that are not seen in RUC/RAP-based analyses. Results show that RUC/RAP-derived near-ground SRH continues to show larger skill than deeper-layer SRH for springtime, afternoon/evening cases over the plains (the “FP” domain), although 0–1-km SRH becomes more skillful than 0–500-m SRH. The skill of kinematic variables decreases over the FP domain, as the skill of mixed-layer convective available potential energy (MLCAPE) and the percent of the low-level horizontal vorticity that is streamwise increase for significant tornadoes. Large skill is found for mean ground-relative winds (GRWs) over all layers tested, but the skill of SRWs using Bunkers motion is relatively small. The field project dataset is shown to be biased toward particularly high-end nontornadic supercells, with more tornado-favorable mixed-layer lifted condensation levels (MLLCLs), lapse rates, and low-level shear/SRH compared to the nontornadic cases in the RUC/RAP dataset over the FP domain. The skill of deeper-layer SRH, GRWs, SRWs, and MLCAPE is unusually large in the field project sample, which highlights variables that may increase the likelihood of tornadoes when other variables that relate to the supercell tornado production (low-level shear/SRH and MLLCLs) are already in a tornado-favorable range. The skill of deeper-layer kinematic variables is particularly evident when observed storm motions are used instead of Bunkers motion.

Significance Statement

Researchers continue to explore reasons why some storms produce tornadoes and others do not. Some recent studies show conflicting results, including the best layers to analyze the environmental wind shear and the ability of wind speeds relative to the storm to distinguish nontornadic from tornadic storms. One study is rooted in observations taken for field projects that targeted tornadic storms and the others in model analyses. Restricting model analyses to a spatiotemporal region that emulates field projects does not explain the disagreement but reveals how the skill of some other variables changes. The tendency for field projects to target particularly strong storms and the use of actual storm motions versus estimates of storm motions both contribute to the conflicting results.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael C. Coniglio, michael.coniglio@noaa.gov

Abstract

This study explores reasons for differences in discriminations of nontornadic and tornadic supercell environments between a recent study of field project (FP) radiosonde observations and RUC/RAP-based studies. Two differences are explored: 1) differences in the relative skill between near-ground and deeper-layer storm-relative helicity (SRH) and 2) differences in skill for storm-relative winds (SRWs) seen in observed soundings that are not seen in RUC/RAP-based analyses. Results show that RUC/RAP-derived near-ground SRH continues to show larger skill than deeper-layer SRH for springtime, afternoon/evening cases over the plains (the “FP” domain), although 0–1-km SRH becomes more skillful than 0–500-m SRH. The skill of kinematic variables decreases over the FP domain, as the skill of mixed-layer convective available potential energy (MLCAPE) and the percent of the low-level horizontal vorticity that is streamwise increase for significant tornadoes. Large skill is found for mean ground-relative winds (GRWs) over all layers tested, but the skill of SRWs using Bunkers motion is relatively small. The field project dataset is shown to be biased toward particularly high-end nontornadic supercells, with more tornado-favorable mixed-layer lifted condensation levels (MLLCLs), lapse rates, and low-level shear/SRH compared to the nontornadic cases in the RUC/RAP dataset over the FP domain. The skill of deeper-layer SRH, GRWs, SRWs, and MLCAPE is unusually large in the field project sample, which highlights variables that may increase the likelihood of tornadoes when other variables that relate to the supercell tornado production (low-level shear/SRH and MLLCLs) are already in a tornado-favorable range. The skill of deeper-layer kinematic variables is particularly evident when observed storm motions are used instead of Bunkers motion.

Significance Statement

Researchers continue to explore reasons why some storms produce tornadoes and others do not. Some recent studies show conflicting results, including the best layers to analyze the environmental wind shear and the ability of wind speeds relative to the storm to distinguish nontornadic from tornadic storms. One study is rooted in observations taken for field projects that targeted tornadic storms and the others in model analyses. Restricting model analyses to a spatiotemporal region that emulates field projects does not explain the disagreement but reveals how the skill of some other variables changes. The tendency for field projects to target particularly strong storms and the use of actual storm motions versus estimates of storm motions both contribute to the conflicting results.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael C. Coniglio, michael.coniglio@noaa.gov
Save
  • Anderson-Frey, A. K., and H. E. Brooks, 2021: Compared to what? Establishing environmental baselines for tornado warning skill. Bull. Amer. Meteor. Soc., 102, E738E747, https://doi.org/10.1175/BAMS-D-19-0310.1.

    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2017: Self-organizing maps for the investigation of tornadic near-storm environments. Wea. Forecasting, 32, 14671475, https://doi.org/10.1175/WAF-D-17-0034.1.

    • Search Google Scholar
    • Export Citation
  • Anderson-Frey, A. K., Y. P. Richardson, A. R. Dean, R. L. Thompson, and B. T. Smith, 2019: Characteristics of tornado events and warnings in the southeastern United States. Wea. Forecasting, 34, 10171034, https://doi.org/10.1175/WAF-D-18-0211.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.

  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994a: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. B. Wilhelmson, 1994b: The role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126136, https://doi.org/10.1175/1520-0493(1994)122<0126:TROMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., 2018: Observations of right-moving supercell motion forecast errors. Wea. Forecasting, 33, 145159, https://doi.org/10.1175/WAF-D-17-0133.1.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., M. B. Wilson, M. S. Van Den Broeke, and D. J. Healey, 2022: Scan-by-scan storm-motion deviations for concurrent tornadic and nontornadic supercells. Wea. Forecasting, 37, 749770, https://doi.org/10.1175/WAF-D-21-0153.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. Taszarek, and M. D. Parker, 2020: Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Wea. Forecasting, 35, 26212638, https://doi.org/10.1175/WAF-D-20-0153.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and M. D. Parker, 2020: Insights into supercells and their environments from three decades of targeted radiosonde observations. Mon. Wea. Rev., 148, 48934915, https://doi.org/10.1175/MWR-D-20-0105.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and R. E. Jewell, 2022: SPC mesoscale analysis compared to field-project soundings: Implications for supercell environment studies. Mon. Wea. Rev., 150, 567588, https://doi.org/10.1175/MWR-D-21-0222.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., and H. E. Brooks, 2004: Baseline climatology of sounding derived parameters associated with deep moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Davenport, C. E., and M. D. Parker, 2015: Impact of environmental heterogeneity on the dynamics of a dissipating supercell thunderstorm. Mon. Wea. Rev., 143, 42444277, https://doi.org/10.1175/MWR-D-15-0072.1.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, https://doi.org/10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2006: Tornadoes in environments with small helicity and/or high LCL heights. Wea. Forecasting, 21, 579594, https://doi.org/10.1175/WAF928.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? J. Atmos. Sci., 72, 340348, https://doi.org/10.1175/JAS-D-14-0084.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, https://doi.org/10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 20052029, https://doi.org/10.1175/1520-0493(1993)121<2005:TIOHON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A. T., and D. B. Stephenson, 2011: Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Wea. Forecasting, 26, 699713, https://doi.org/10.1175/WAF-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2020: The relative importance of updraft and cold pool characteristics in supercell tornadogenesis using highly idealized simulations. J. Atmos. Sci., 77, 40894107, https://doi.org/10.1175/JAS-D-20-0126.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, E. N. Rasmussen, J. C. Furtado, and B. E. Coffer, 2020: Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments. Mon. Wea. Rev., 148, 41854207, https://doi.org/10.1175/MWR-D-20-0147.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, and E. N. Rasmussen, 2021: Examining relationships between environmental conditions and supercell motion in time. Wea. Forecasting, 36, 737755, https://doi.org/10.1175/WAF-D-20-0192.1.

    • Search Google Scholar
    • Export Citation
  • French, M. M., and D. M. Kingfield, 2021: Tornado formation and intensity prediction using polarimetric radar estimates of updraft area. Wea. Forecasting, 36, 22112231, https://doi.org/10.1175/WAF-D-21-0087.1.

    • Search Google Scholar
    • Export Citation
  • Goldacker, N. A., and M. D. Parker, 2021: Low-level updraft intensification in response to environmental wind profiles. J. Atmos. Sci., 78, 27632781, https://doi.org/10.1175/JAS-D-20-0354.1.

    • Search Google Scholar
    • Export Citation
  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, https://doi.org/10.1175/WAF-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Gray, K., and J. Frame, 2021: The impact of midlevel shear orientation on the longevity of and downdraft location and tornado-like vortex formation within simulated supercells. Mon. Wea. Rev., 149, 37393759, https://doi.org/10.1175/MWR-D-21-0085.1.

    • Search Google Scholar
    • Export Citation
  • Guarriello, F., C. J. Nowotarski, and C. C. Epifanio, 2018: Effects of the low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms. J. Atmos. Sci., 75, 731753, https://doi.org/10.1175/JAS-D-17-0174.1.

    • Search Google Scholar
    • Export Citation
  • Hampshire, N. L., R. M. Mosier, T. M. Ryan, and D. E. Cavanaugh, 2018: Relationship of low-level instability and tornado damage rating based on observed soundings. J. Oper. Meteor., 6 (1), 112, https://doi.org/10.15191/nwajom.2018.0601.

    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and A. E. Cohen, 2016: The challenge of forecasting significant tornadoes from June to October using convective parameters. Wea. Forecasting, 31, 20752084, https://doi.org/10.1175/WAF-D-16-0005.1.

    • Search Google Scholar
    • Export Citation
  • Healey, D. J., and M. S. Van Den Broeke, 2023: Comparing polarimetric signatures of proximate pretornadic and nontornadic supercells in similar environments. Wea. Forecasting, 38, 20112027, https://doi.org/10.1175/WAF-D-23-0013.1.

    • Search Google Scholar
    • Export Citation
  • Hua, Z., and A. K. Anderson-Frey, 2022: Self-organizing maps for the classification of spatial and temporal variability of tornado-favorable parameters. Mon. Wea. Rev., 150, 393407, https://doi.org/10.1175/MWR-D-21-0168.1.

    • Search Google Scholar
    • Export Citation
  • Hutson, A., and C. Weiss, 2023: Using ensemble sensitivity analysis to identify storm characteristics associated with tornadogenesis in high-resolution simulated supercells. Mon. Wea. Rev., 151, 26332658, https://doi.org/10.1175/MWR-D-22-0288.1.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., D. J. Stensrud, and X. Wang, 2019: Diagnosing convective dependencies on near-storm environments using ensemble sensitivity analyses. Mon. Wea. Rev., 147, 495517, https://doi.org/10.1175/MWR-D-18-0140.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, https://doi.org/10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Krocak, M. J., and H. E. Brooks, 2018: Climatological estimates of hourly tornado probability for the United States. Wea. Forecasting, 33, 5969, https://doi.org/10.1175/WAF-D-17-0123.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, https://doi.org/10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., C. A. Finley, and C. D. Karstens, 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441, https://doi.org/10.1175/MWR-D-11-00351.1.

    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., and M. D. Flournoy, 2023: The influence of cell mergers on supercell characteristics and tornado evolution on 27–28 April 2011. Mon. Wea. Rev., 151, 15511569, https://doi.org/10.1175/MWR-D-22-0189.1.

    • Search Google Scholar
    • Export Citation
  • Lyza, A. W., M. D. Flournoy, and E. N. Rasmussen, 2022: Observed characteristics of the tornadic supercells of 27–28 April 2011 in the southeast United States. Mon. Wea. Rev., 150, 28832910, https://doi.org/10.1175/MWR-D-21-0274.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 10951104, https://doi.org/10.1175/JAS-D-16-0372.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852859, https://doi.org/10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, P. Markowski, D. Dowell, and J. Wurman, 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327, https://doi.org/10.1175/MWR-D-11-00025.1.

    • Search Google Scholar
    • Export Citation
  • Muehr, A. J., J. H. Ruppert, M. D. Flournoy, and J. M. Peters, 2024: The influence of midlevel shear and horizontal rotors on supercell updraft dynamics. J. Atmos. Sci., 81, 153176, https://doi.org/10.1175/JAS-D-23-0082.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. M., C. R. Homeyer, and K. Q. Allen, 2023: Development and investigation of GridRad-Severe, a multiyear severe event radar dataset. Mon. Wea. Rev., 155, 22572277, https://doi.org/10.1175/MWR-D-23-0017.1.

    • Search Google Scholar
    • Export Citation
  • NCAR, 2019: NCAR Command Language, (version 6.6.2). UCAR/NCAR/CISL/TDD, accessed 6 February 2023, https://doi.org/10.5065/D6WD3XH5.

  • Nixon, C. J., and J. T. Allen, 2022: Distinguishing between hodographs of severe hail and tornadoes. Wea. Forecasting, 37, 17611782, https://doi.org/10.1175/WAF-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783801, https://doi.org/10.1175/WAF-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and E. A. Jones, 2018: Multivariate self-organizing map approach to classifying supercell tornado environments using near-storm, low-level wind and thermodynamic profiles. Wea. Forecasting, 33, 661670, https://doi.org/10.1175/WAF-D-17-0189.1.

    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., B. E. Coffer, M. D. Parker, C. J. Nowotarski, J. P. Mulholland, C. J. Nixon, and J. T. Allen, 2023: Disentangling the influences of storm-relative flow and horizontal streamwise vorticity on low-level mesocyclones in supercells. J. Atmos. Sci., 80, 129149, https://doi.org/10.1175/JAS-D-22-0114.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, https://doi.org/10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577586, https://doi.org/10.1175/1520-0493(1981)109<0577:OTEOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, https://doi.org/10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, https://doi.org/10.1175/WAF-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J. V. Cortinas Jr., and H. E. Brooks, 1997: Discriminating between tornadic and nontornadic thunderstorms using mesoscale model output. Wea. Forecasting, 12, 613632, https://doi.org/10.1175/1520-0434(1997)012<0613:DBTANT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Togstad, W. E., J. M. Davies, S. J. Corfidi, D. R. Bright, and A. R. Dean, 2011: Conditional probability estimation for significant tornadoes based on Rapid Update Cycle (RUC) profiles. Wea. Forecasting, 26, 729743, https://doi.org/10.1175/2011WAF2222440.1.

    • Search Google Scholar
    • Export Citation
  • Wade, A. R., M. C. Coniglio, and C. L. Ziegler, 2018: Comparison of near- and far-field supercell inflow environments using radiosonde observations. Mon. Wea. Rev., 146, 24032415, https://doi.org/10.1175/MWR-D-17-0276.1.

    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, and R. L. Thompson, 2021: Spectrum of near-storm environments for significant severe right-moving supercells in the contiguous United States. Mon. Wea. Rev., 149, 32993323, https://doi.org/10.1175/MWR-D-21-0006.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 426 426 199
Full Text Views 156 156 74
PDF Downloads 186 186 83