Clustering-Based Spatial Interpolation of Parametric Postprocessing Models

Sándor Baran aFaculty of Informatics, University of Debrecen, Debrecen, Hungary

Search for other papers by Sándor Baran in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1035-004X
and
Mária Lakatos aFaculty of Informatics, University of Debrecen, Debrecen, Hungary
bDoctoral School of Informatics, University of Debrecen, Debrecen, Hungary

Search for other papers by Mária Lakatos in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Since the start of the operational use of ensemble prediction systems, ensemble-based probabilistic forecasting has become the most advanced approach in weather prediction. However, despite the persistent development of the last three decades, ensemble forecasts still often suffer from the lack of calibration and might exhibit systematic bias, which calls for some form of statistical postprocessing. Nowadays, one can choose from a large variety of postprocessing approaches, where parametric methods provide full predictive distributions of the investigated weather quantity. Parameter estimation in these models is based on training data consisting of past forecast-observation pairs; thus, postprocessed forecasts are usually available only at those locations where training data are accessible. We propose a general clustering-based interpolation technique of extending calibrated predictive distributions from observation stations to any location in the ensemble domain where there are ensemble forecasts at hand. Focusing on the ensemble model output statistics (EMOS) postprocessing technique, in a case study based on 10-m wind speed ensemble forecasts of the European Centre for Medium-Range Weather Forecasts, we demonstrate the predictive performance of various versions of the suggested method and show its superiority over the regionally estimated and interpolated EMOS models and the raw ensemble forecasts as well.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sándor Baran, baran.sandor@inf.unideb.hu

Abstract

Since the start of the operational use of ensemble prediction systems, ensemble-based probabilistic forecasting has become the most advanced approach in weather prediction. However, despite the persistent development of the last three decades, ensemble forecasts still often suffer from the lack of calibration and might exhibit systematic bias, which calls for some form of statistical postprocessing. Nowadays, one can choose from a large variety of postprocessing approaches, where parametric methods provide full predictive distributions of the investigated weather quantity. Parameter estimation in these models is based on training data consisting of past forecast-observation pairs; thus, postprocessed forecasts are usually available only at those locations where training data are accessible. We propose a general clustering-based interpolation technique of extending calibrated predictive distributions from observation stations to any location in the ensemble domain where there are ensemble forecasts at hand. Focusing on the ensemble model output statistics (EMOS) postprocessing technique, in a case study based on 10-m wind speed ensemble forecasts of the European Centre for Medium-Range Weather Forecasts, we demonstrate the predictive performance of various versions of the suggested method and show its superiority over the regionally estimated and interpolated EMOS models and the raw ensemble forecasts as well.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sándor Baran, baran.sandor@inf.unideb.hu
Save
  • Baran, Á., and S. Baran, 2024: A two-step machine-learning approach to statistical post-processing of weather forecasts for power generation. Quart. J. Roy. Meteor. Soc., 150, 10291047, https://doi.org/10.1002/qj.4635.

    • Search Google Scholar
    • Export Citation
  • Baran, S., and S. Lerch, 2015: Log-normal distribution based Ensemble Model Output Statistics models for probabilistic wind-speed forecasting. Quart. J. Roy. Meteor. Soc., 141, 22892299, https://doi.org/10.1002/qj.2521.

    • Search Google Scholar
    • Export Citation
  • Baran, S., M. Leutbecher, M. Szabó, and Z. Ben Bouallègue, 2019: Statistical post-processing of dual-resolution ensemble forecasts. Quart. J. Roy. Meteor. Soc., 145, 17051720, https://doi.org/10.1002/qj.3521.

    • Search Google Scholar
    • Export Citation
  • Baran, S., Á. Baran, F. Pappenberger, and Z. Ben Bouallègue, 2020: Statistical post-processing of heat index ensemble forecasts: Is there a royal road? Quart. J. Roy. Meteor. Soc., 146, 34163434, https://doi.org/10.1002/qj.3853.

    • Search Google Scholar
    • Export Citation
  • Baran, S., P. Szokol, and M. Szabó, 2021: Truncated generalized extreme value distribution-based ensemble model output statistics model for calibration of wind speed ensemble forecasts. Environmetrics, 32, e2678, https://doi.org/10.1002/env.2678.

    • Search Google Scholar
    • Export Citation
  • Ben Bouallègue, Z., T. Haiden, N. J. Weber, T. M. Hamill, and D. S. Richardson, 2020: Accounting for representativeness in the verification of ensemble precipitation forecasts. Mon. Wea. Rev., 148, 20492062, https://doi.org/10.1175/MWR-D-19-0323.1.

    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., and Y. Hochberg, 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc., B57, 289300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    • Search Google Scholar
    • Export Citation
  • Bremnes, J. B., 2019: Constrained quantile regression splines for ensemble postprocessing. Mon. Wea. Rev., 147, 17691780, https://doi.org/10.1175/MWR-D-18-0420.1.

    • Search Google Scholar
    • Export Citation
  • Bremnes, J. B., 2020: Ensemble postprocessing using quantile function regression based on neural networks and Bernstein polynomials. Mon. Wea. Rev., 148, 403414, https://doi.org/10.1175/MWR-D-19-0227.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 2018a: Introduction to the special issue on “25 years of ensemble forecasting”. Quart. J. Roy. Meteor. Soc., 145 (S1), 111, https://doi.org/10.1002/qj.3370.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., 2018b: Ensemble forecasting and the need for calibration. Statistical Postprocessing of Ensemble Forecasts, S. Vannitsem, D. S. Wilks, and J. W. Messner, Eds., Elsevier, 15–48, https://doi.org/10.1016/B978-0-12-812372-0.00002-9.

  • Buizza, R., P. L. Houtekamer, G. Pellerin, Z. Toth, Y. Zhu, and M. Wei, 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, https://doi.org/10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Diebold, F. X., and R. S. Mariano, 1995: Comparing predictive accuracy. J. Bus. Econ. Stat., 13, 253263, https://doi.org/10.1080/07350015.1995.10524599.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2023: IFS Documentation CY48R1—Part V: Ensemble prediction system. ECMWF, 24 pp., https://doi.org/10.21957/e529074162.

  • Feldmann, K., D. S. Richardson, and T. Gneiting, 2019: Grid- versus station-based postprocessing of ensemble temperature forecasts. Geophys. Res. Lett., 46, 77447751, https://doi.org/10.1029/2019GL083189.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., and A. Hense, 2007: Statistical downscaling of extreme precipitation events using censored quantile regression. Mon. Wea. Rev., 135, 23652378, https://doi.org/10.1175/MWR3403.1.

    • Search Google Scholar
    • Export Citation
  • Ghazvinian, M., Y. Zhang, D.-J. Seo, M. He, and N. Fernando, 2021: A novel hybrid artificial neural network—Parametric scheme for postprocessing medium-range precipitation forecasts. Adv. Water Resour., 151, 103907, https://doi.org/10.1016/j.advwatres.2021.103907.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., 2011: Making and evaluating point forecasts. J. Amer. Stat. Assoc., 106, 746762, https://doi.org/10.1198/jasa.2011.r10138.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., 2014: Calibration of medium-range weather forecasts. ECMWF Tech. Memo. 719, 30 pp., https://doi.org/10.21957/8xna7glta.

  • Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, https://doi.org/10.1198/016214506000001437.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and R. Ranjan, 2011: Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econ. Stat., 29, 411422, https://doi.org/10.1198/jbes.2010.08110.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., A. E. Raftery, A. H. Westveld III, and T. Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, https://doi.org/10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilistic forecasts, calibration and sharpness. J. Roy. Stat. Soc., 69B, 243268, https://doi.org/10.1111/j.1467-9868.2007.00587.x.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., M. Janousek, J. Bidlot, R. Buizza, L. Ferranti, F. Prates, and F. Vitart, 2021: Evaluation of ECMWF forecasts, including the 2021 upgrade. ECMWF Tech. Memo. 884, 56 pp., https://doi.org/10.21957/90pgicjk4.

  • Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 146, 40794098, https://doi.org/10.1175/MWR-D-18-0147.1.

    • Search Google Scholar
    • Export Citation
  • Hemri, S., M. Scheuerer, F. Pappenberger, K. Bogner, and T. Haiden, 2014: Trends in the predictive performance of raw ensemble weather forecasts. Geophys. Res. Lett., 41, 91979205, https://doi.org/10.1002/2014GL062472.

    • Search Google Scholar
    • Export Citation
  • Hemri, S., T. Haiden, and F. Pappenberger, 2016: Discrete postprocessing of total cloud cover ensemble forecasts. Mon. Wea. Rev., 144, 25652577, https://doi.org/10.1175/MWR-D-15-0426.1.

    • Search Google Scholar
    • Export Citation
  • Jobst, D., A. Möller, and J. Groß, 2023: D-vine-copula-based postprocessing of wind speed ensemble forecasts. Quart. J. Roy. Meteor. Soc., 149, 25752597, https://doi.org/10.1002/qj.4521.

    • Search Google Scholar
    • Export Citation
  • Kleiber, W., A. E. Raftery, J. Baars, T. Gneiting, C. F. Mass, and E. Grimit, 2011: Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Wea. Rev., 139, 26302649, https://doi.org/10.1175/2010MWR3511.1.

    • Search Google Scholar
    • Export Citation
  • Lakatos, M., S. Lerch, S. Hemri, and S. Baran, 2023: Comparison of multivariate post-processing methods using global ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 149, 856877, https://doi.org/10.1002/qj.4436.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., and T. L. Thorarinsdottir, 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, https://doi.org/10.3402/tellusa.v65i0.21206.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., and S. Baran, 2017: Similarity-based semilocal estimation of post-processing models. J. Roy. Stat. Soc., 66C, 2951, https://doi.org/10.1111/rssc.12153.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., S. Baran, A. Möller, J. Groß, R. Schefzik, S. Hemri, and M. Graeter, 2020: Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes Geophys., 27, 349371, https://doi.org/10.5194/npg-27-349-2020.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., J. Baars, G. Wedam, E. Grimit, and R. Steed, 2008: Removal of systematic model bias on a model grid. Wea. Forecasting, 23, 438459, https://doi.org/10.1175/2007WAF2006117.1.

    • Search Google Scholar
    • Export Citation
  • Möller, A., and J. Groß, 2020: Probabilistic temperature forecasting with a heteroscedastic autoregressive ensemble postprocessing model. Quart. J. Roy. Meteor. Soc., 146, 211224, https://doi.org/10.1002/qj.3667.

    • Search Google Scholar
    • Export Citation
  • Möller, A., A. Lenkoski, and T. L. Thorarinsdottir, 2013: Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Quart. J. Roy. Meteor. Soc., 139, 982991, https://doi.org/10.1002/qj.2009.

    • Search Google Scholar
    • Export Citation
  • Politis, D. N., and J. P. Romano, 1994: The stationary bootstrap. J. Amer. Stat. Assoc., 89, 13031313, https://doi.org/10.1080/01621459.1994.10476870.

    • Search Google Scholar
    • Export Citation
  • Primo, C., B. Schulz, S. Lerch, and R. Hess, 2024: Comparison of model output statistics and neural networks to postprocess wind gusts. arXiv, 2401.11896v2, https://doi.org/10.48550/arXiv.2401.11896.

  • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, https://doi.org/10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Rasp, S., and S. Lerch, 2018: Neural networks for postprocessing ensemble weather forecasts. Mon. Wea. Rev., 146, 38853900, https://doi.org/10.1175/MWR-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • Schefzik, R., and A. Möller, 2018: Ensemble postprocessing methods incorporating dependence structures. Statistical Postprocessing of Ensemble Forecasts, S. Vannitsem, D. S. Wilks, and J. W. Messner, Eds., Elsevier, 91–125, https://doi.org/10.1016/B978-0-12-812372-0.00004-2.

  • Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting, 2013: Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616640, https://doi.org/10.1214/13-STS443.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and L. Büermann, 2014: Spatially adaptive post-processing of ensemble forecasts for temperature. J. Roy. Stat. Soc., 63C, 405422, https://doi.org/10.1111/rssc.12040.

    • Search Google Scholar
    • Export Citation
  • Scheuerer, M., and D. Möller, 2015: Probabilistic wind speed forecasting on a grid based on ensemble model output statistics. Ann. Appl. Stat., 9, 13281349, https://doi.org/10.1214/15-AOAS843.

    • Search Google Scholar
    • Export Citation
  • Schulz, B., and S. Lerch, 2022: Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Wea. Rev., 150, 235257, https://doi.org/10.1175/MWR-D-21-0150.1.

    • Search Google Scholar
    • Export Citation
  • Szabó, M., E. Gascón, and S. Baran, 2023: Parametric postprocessing of dual-resolution precipitation forecasts. Wea. Forecasting, 38, 13131322, https://doi.org/10.1175/WAF-D-23-0003.1.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T. L., and T. Gneiting, 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371388, https://doi.org/10.1111/j.1467-985X.2009.00616.x.

    • Search Google Scholar
    • Export Citation
  • Van Schaeybroeck, B., and S. Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: Theoretical aspects. Quart. J. Roy. Meteor. Soc., 141, 807818, https://doi.org/10.1002/qj.2397.

    • Search Google Scholar
    • Export Citation
  • Vannitsem, S., D. S. Wilks, and J. W. Messner, Eds., 2019: Statistical Postprocessing of Ensemble Forecasts. Elsevier, 347 pp., https://doi.org/10.1016/C2016-0-03244-8.

  • Vannitsem, S., and Coauthors, 2021: Statistical postprocessing for weather forecasts: Review, challenges, and avenues in a big data world. Bull. Amer. Meteor. Soc., 102, E681E699, https://doi.org/10.1175/BAMS-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2020: Statistical Methods in the Atmospheric Sciences. 4th ed. Elsevier, 818 pp.

All Time Past Year Past 30 Days
Abstract Views 22218 22218 13568
Full Text Views 303 303 169
PDF Downloads 98 98 37