Subseasonal Variability of U.S. Coastal Sea Level from MJO and ENSO Teleconnection Interference

Marybeth C. Arcodia aRosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida
bColorado State University, Fort Collins, Colorado

Search for other papers by Marybeth C. Arcodia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7038-1932
,
Emily Becker cCooperative Institute for Marine and Atmospheric Science, Miami, Florida

Search for other papers by Emily Becker in
Current site
Google Scholar
PubMed
Close
, and
Ben P. Kirtman aRosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida
cCooperative Institute for Marine and Atmospheric Science, Miami, Florida

Search for other papers by Ben P. Kirtman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is underexplored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the U.S. East and West Coasts reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea level anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure that are spatially varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.

Significance Statement

Coastal flooding due to sea level rise is increasingly threatening communities, but natural fluctuations of coastal sea levels can exacerbate the human-caused sea level rise trend. This study assesses the role of tropical influences on coastal subseasonal (2 weeks–3 months) sea level heights. Further, we explore the mechanisms responsible, particularly for constructive interference of signals contributing to coastal flooding events. Subseasonal signals amplify or suppress the lower-frequency signals, resulting in higher or lower sea level heights than those expected from known climate modes (e.g., ENSO). Low-level onshore winds and reduced sea level pressure connected to the tropical phenomena are shown to be indicators of increased U.S. coastal sea levels, and vice versa. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marybeth C. Arcodia, marcodia@earth.miami.edu

Abstract

Climate variability affects sea levels as certain climate modes can accelerate or decelerate the rising sea level trend, but subseasonal variability of coastal sea levels is underexplored. This study is the first to investigate how remote tropical forcing from the MJO and ENSO impact subseasonal U.S. coastal sea level variability. Here, composite analyses using tide gauge data from six coastal regions along the U.S. East and West Coasts reveal influences on sea level anomalies from both the MJO and ENSO. Tropical MJO deep convection forces a signal that results in U.S. coastal sea level anomalies that vary based on MJO phase. Further, ENSO is shown to modulate both the MJO sea level response and background state of the teleconnections. The sea level anomalies can be significantly enhanced or weakened by the MJO-associated anomaly along the East Coast due to constructive or destructive interference with the ENSO-associated anomaly, respectively. The West Coast anomaly is found to be dominated by ENSO. We examine physical mechanisms by which MJO and ENSO teleconnections impact coastal sea levels and find consistent relationships between low-level winds and sea level pressure that are spatially varying drivers of the variability. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.

Significance Statement

Coastal flooding due to sea level rise is increasingly threatening communities, but natural fluctuations of coastal sea levels can exacerbate the human-caused sea level rise trend. This study assesses the role of tropical influences on coastal subseasonal (2 weeks–3 months) sea level heights. Further, we explore the mechanisms responsible, particularly for constructive interference of signals contributing to coastal flooding events. Subseasonal signals amplify or suppress the lower-frequency signals, resulting in higher or lower sea level heights than those expected from known climate modes (e.g., ENSO). Low-level onshore winds and reduced sea level pressure connected to the tropical phenomena are shown to be indicators of increased U.S. coastal sea levels, and vice versa. Two case studies reveal how MJO and ENSO teleconnection interference played a role in notable coastal flooding events. Much of the focus on sea level rise concerns the long-term trend associated with anthropogenic warming, but on shorter time scales, we find subseasonal climate variability has the potential to exacerbate the regional coastal flooding impacts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marybeth C. Arcodia, marcodia@earth.miami.edu
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, E. D., R. C. Antweiler, P. J. Neiman, and F. M. Ralph, 2004: Influence of ENSO on flood frequency along the California Coast. J. Climate, 17, 337348, https://doi.org/10.1175/1520-0442(2004)017<0337:IOEOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., and B. P. Kirtman, 2023: Using simplified linear and nonlinear models to assess ENSO-modulated MJO teleconnections. Climate Dyn., 61, 54435463, https://doi.org/10.1007/s00382-023-06864-x.

    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 46214640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    • Search Google Scholar
    • Export Citation
  • Barnard, P. L., and Coauthors, 2015: Coastal vulnerability across the Pacific dominated by El Nino/Southern Oscillation. Nat. Geosci., 8, 801807, https://doi.org/10.1038/ngeo2539.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., E. H. Berbery, and R. W. Higgins, 2011: Modulation of cold-season U.S. daily precipitation by the Madden–Julian Oscillation. J. Climate, 24, 51575166, https://doi.org/10.1175/2011JCLI4018.1.

    • Search Google Scholar
    • Export Citation
  • Buchanan, M. K., S. Kulp, L. Cushing, R. Morello-Frosch, T. Nedwick, and B. Strauss, 2020: Sea level rise and coastal flooding threaten affordable housing. Environ. Res. Lett., 15, 124020, https://doi.org/10.1088/1748-9326/abb266.

    • Search Google Scholar
    • Export Citation
  • Chapman, W. E., A. C. Subramanian, S.-P. Xie, M. D. Sierks, F. M. Ralph, and Y. Kamae, 2021: Monthly modulations of ENSO teleconnections: Implications for potential predictability in North America. J. Climate, 34, 58995921, https://doi.org/10.1175/JCLI-D-20-0391.1.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and R. E. Davis, 1982: Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanogr., 12, 757784, https://doi.org/10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and N. J. White, 2011: Sea-level rise from the late 19th to the early 21st century. Surv. Geophys., 32, 585602, https://doi.org/10.1007/s10712-011-9119-1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., P. D. Sardeshmukh, and C. Penland, 2001: Changes of subseasonal variability associated with El Niño. J. Climate, 14, 33563374, https://doi.org/10.1175/1520-0442(2001)014<3356:COSVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dasgupta, S., B. Laplante, S. Murray, and D. Wheeler, 2009: Sea-level rise and storm surges: A comparative analysis of impacts in developing countries. World Bank Policy Research Working Paper 4901, 43 pp., https://doi.org/10.1596/1813-9450-4901.

  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Search Google Scholar
    • Export Citation
  • Durand, F., C. G. Piecuch, M. Becker, F. Papa, S. V. Raju, J. U. Khan, and R. M. Ponte, 2019: Impact of continental freshwater runoff on coastal sea level. Surv. Geophys., 40, 14371466, https://doi.org/10.1007/s10712-019-09536-w.

    • Search Google Scholar
    • Export Citation
  • Egan, K., L. Brown, K. Earwaker, C. Fanelli, A. Grodsky, and Z. Aijun, 2010: Effects of the November 2009 Nor’easter on water levels. NOAA Tech. Rep. NOS CO-OPS 056, 88 pp., https://tidesandcurrents.noaa.gov/publications/tech_rpt_56.pdf.

  • Enfield, D. B., and J. S. Allen, 1980: On the structure and dynamics of monthly mean sea level anomalies along the Pacific Coast of North and South America. J. Phys. Oceanogr., 10, 557578, https://doi.org/10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enríquez, A. R., T. Wahl, H. E. Baranes, S. A. Talke, P. M. Orton, J. F. Booth, and I. D. Haigh, 2022: Predictable changes in extreme sea levels and coastal flood risk due to long-term tidal cycles. J. Geophys. Res. Oceans, 127, e2021JC018157, https://doi.org/10.1029/2021JC018157.

    • Search Google Scholar
    • Export Citation
  • Erikson, L. H., and Coauthors, 2018: Identification of storm events and contiguous coastal sections for deterministic modeling of extreme coastal flood events in response to climate change. Coastal Eng., 140, 316330, https://doi.org/10.1016/j.coastaleng.2018.08.003.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., 2019: Regional differences in sea level rise between the mid-Atlantic bight and the South Atlantic Bight: Is the Gulf Stream to blame? Earth’s Future, 7, 771783, https://doi.org/10.1029/2019EF001174.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., and L. P. Atkinson, 2014: Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future, 2, 362382, https://doi.org/10.1002/2014EF000252.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., L. P. Atkinson, W. B. Corlett, and J. L. Blanco, 2013: Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. Oceans, 118, 685697, https://doi.org/10.1002/jgrc.20091.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., and A. J. Clarke, 1974: Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. Oceanogr. Abstr., 21, 325345, https://doi.org/10.1016/0011-7471(74)90038-2.

    • Search Google Scholar
    • Export Citation
  • Goodman, A. C., K. M. Thorne, K. J. Buffington, C. M. Freeman, and C. N. Janousek, 2018: El Niño increases high-tide flooding in tidal wetlands along the U.S. Pacific Coast. J. Geophys. Res. Biogeosci., 123, 31623177, https://doi.org/10.1029/2018JG004677.

    • Search Google Scholar
    • Export Citation
  • Griggs, G., 2021: Rising seas in California—An update on sea-level rise science. World Scientific Encyclopedia of Climate Change: Case Studies of Climate Risk, Action, and Opportunity, J. W. Dash, Ed., Vol. 3, World Scientific, 105–111.

  • Hamlington, B. D., R. R. Leben, K.-Y. Kim, R. S. Nerem, L. P. Atkinson, and P. R. Thompson, 2015: The effect of the El Niño-Southern Oscillation on U.S. regional and coastal sea level. J. Geophys. Res. Oceans, 120, 39703986, https://doi.org/10.1002/2014JC010602.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and I.-S. Kang, 1987: Barotropic models of the extratropical response to El Niño. J. Atmos. Sci., 44, 35763586, https://doi.org/10.1175/1520-0469(1987)044<3576:BMOTER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian Oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and S.-W. Son, 2017: Madden–Julian Oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 45674587, https://doi.org/10.1175/JCLI-D-16-0789.1.

    • Search Google Scholar
    • Export Citation
  • Hino, M., S. T. Belanger, C. B. Field, A. R. Davies, and K. J. Mach, 2019: High-tide flooding disrupts local economic activity. Sci. Adv., 5, eaau2736, https://doi.org/10.1126/sciadv.aau2736.

    • Search Google Scholar
    • Export Citation
  • Hirsch, M. E., A. T. DeGaetano, and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, https://doi.org/10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press, 3056 pp., https://doi.org/10.1017/9781009325844.

  • Jenney, A. M., K. M. Nardi, E. A. Barnes, and D. A. Randall, 2019: The seasonality and regionality of MJO impacts on North American temperature. Geophys. Res. Lett., 46, 91939202, https://doi.org/10.1029/2019GL083950.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., D. E. Waliser, and P. E. Roundy, 2012: Tropical–extratropical interactions. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 497–512, https://doi.org/10.1007/978-3-642-13914-7_14.

  • Lee, R. W., S. J. Woolnough, A. J. Charlton-Perez, and F. Vitart, 2019: ENSO modulation of MJO teleconnections to the North Atlantic and Europe. Geophys. Res. Lett., 46, 13 53513 545, https://doi.org/10.1029/2019GL084683.

    • Search Google Scholar
    • Export Citation
  • Li, S., and Coauthors, 2022: Contributions of different sea-level processes to high-tide flooding along the U.S. coastline. J. Geophys. Res. Oceans, 127, e2021JC018276, https://doi.org/10.1029/2021JC018276.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2008: Forecast skill of the Madden–Julian Oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 41304149, https://doi.org/10.1175/2008MWR2459.1.

    • Search Google Scholar
    • Export Citation
  • Long, X., and Coauthors, 2021: Seasonal forecasting skill of sea-level anomalies in a multi-model prediction framework. J. Geophys. Res. Oceans, 126, e2020JC017060, https://doi.org/10.1029/2020JC017060.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marcos, M., and P. L. Woodworth, 2017: Spatiotemporal changes in extreme sea levels along the coasts of the North Atlantic and the Gulf of Mexico. J. Geophys. Res. Oceans, 122, 70317048, https://doi.org/10.1002/2017JC013065.

    • Search Google Scholar
    • Export Citation
  • Marcos, M., F. M. Calafat, Á. Berihuete, and S. Dangendorf, 2015: Long-term variations in global sea level extremes. J. Geophys. Res. Oceans, 120, 81158134, https://doi.org/10.1002/2015JC011173.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Search Google Scholar
    • Export Citation
  • Martello, M. V., and A. J. Whittle, 2023: Estimating coastal flood damage costs to transit infrastructure under future sea level rise. Commun. Earth Environ., 4, 137, https://doi.org/10.1038/s43247-023-00804-7.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian Oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Menéndez, M., and P. L. Woodworth, 2010: Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. Oceans, 115, C10011, https://doi.org/10.1029/2009JC005997.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., A. S. Genz, C. P. Kontoes, and J. J. Marra, 2013: Annual maximum water levels from tide gauges: Contributing factors and geographic patterns. J. Geophys. Res. Oceans, 118, 25352546, https://doi.org/10.1002/jgrc.20173.

    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, and K.-J. Ha, 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149, https://doi.org/10.1007/s00382-010-0902-3.

    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Search Google Scholar
    • Export Citation
  • Muis, S., I. D. Haigh, G. Guimarães Nobre, J. C. J. H. Aerts, and P. J. Ward, 2018: Influence of El Niño-Southern Oscillation on global coastal flooding. Earth’s Future, 6, 13111322, https://doi.org/10.1029/2018EF000909.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and Coauthors, 2021: A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Climate Change, 11, 338342, https://doi.org/10.1038/s41558-021-00993-z.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., and K. R. Thompson, 2010: Madden-Julian Oscillation and sea level: Local and remote forcing. J. Geophys. Res. Oceans, 115, C01003, https://doi.org/10.1029/2009JC005337.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2015: Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys. Res. Lett., 42, 59185925, https://doi.org/10.1002/2015GL064580.

    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., F. M. Calafat, S. Dangendorf, and G. Jordà, 2019: The ability of barotropic models to simulate historical mean sea level changes from coastal tide gauge data. Surv. Geophys., 40, 13991435, https://doi.org/10.1007/s10712-019-09537-9.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., B. Meyssignac, C. M. Domingues, D. Stammer, A. Cazenave, and T. Lopez, 2019: Guest editorial: Relationships between coastal sea level and large-scale ocean circulation. Surv. Geophys., 40, 12451249, https://doi.org/10.1007/s10712-019-09574-4.

    • Search Google Scholar
    • Export Citation
  • Ponte, R. M., B. Meyssignac, C. M. Domingues, D. Stammer, A. Cazenave, and T. Lopez, 2020: Relationships between Coastal Sea Level and Large Scale Ocean Circulation. Springer, 450 pp.

  • Ranjha, R., G. Svensson, M. Tjernström, and A. Semedo, 2013: Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus, 65A, 20412, https://doi.org/10.3402/tellusa.v65i0.20412.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., Y. Wei, and S. Zhao, 2022: Low-frequency variability in the real-time multivariate MJO index: Real or artificial? J. Climate, 36, 20732089, https://doi.org/10.1175/JCLI-D-22-0368.1.

    • Search Google Scholar
    • Export Citation
  • Ryan, H. F., and M. Noble, 2002: Sea level response to ENSO along the Central California Coast: How the 1997–1998 event compares with the historic record. Prog. Oceanogr., 54, 149169, https://doi.org/10.1016/S0079-6611(02)00047-2.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and H.-J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., O. E. J. Wing, P. D. Bates, J. M. Done, K. A. Johnson, and D. R. Cameron, 2020: Increased flood exposure due to climate change and population growth in the United States. Earth’s Future, 8, e2020EF001778, https://doi.org/10.1029/2020EF001778.

    • Search Google Scholar
    • Export Citation
  • Sweet, W. V., and C. Zervas, 2011: Cool-season sea level anomalies and storm surges along the U.S. East coast: Climatology and comparison with the 2009/10 El Niño. Mon. Wea. Rev., 139, 22902299, https://doi.org/10.1175/MWR-D-10-05043.1.

    • Search Google Scholar
    • Export Citation
  • Sweet, W. V., and J. Park, 2014: From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earth’s Future, 2, 579600, https://doi.org/10.1002/2014EF000272.

    • Search Google Scholar
    • Export Citation
  • Sweet, W. V., J. Park, S. Gill, and J. Marra, 2015: New ways to measure waves and their effects at NOAA tide gauges: A Hawaiian-network perspective. Geophys. Res. Lett., 42, 93559361, https://doi.org/10.1002/2015GL066030.

    • Search Google Scholar
    • Export Citation
  • Sweet, W. V., R. E. Kopp, C. P. Weaver, J. Obeysekera, R. M. Horton, E. R. Thieler, and C. Zervas, 2017: Global and regional sea level rise scenarios for the United States. NOAA Tech. Rep. NOS CO-OPS 083, NOAA/NOS Center for Operational Oceanographic Products and Services, https://pubs.giss.nasa.gov/abs/sw01000b.html.

  • Sweet, W. V., G. Dusek, J. Obeysekera, and J. J. Marra, 2018: Patterns and projections of high tide flooding along the U.S. coastline using a common impact threshold. NOAA Tech. Rep. NOS CO-OPS 086, 56 pp., https://www.tidesandcurrents.noaa.gov/publications/techrpt86_PaP_of_HTFlooding.pdf.

  • Sweet, W. V., G. Dusek, D. C. Marcy, G. Carbin, and J. Marra, 2019: 2018 state of U.S. high tide flooding with a 2019 outlook. NOAA Tech. Rep NOS CO-OPS 090, 31 pp., https://tidesandcurrents.noaa.gov/publications/Techrpt_090_2018_State_of_US_HighTideFlooding_with_a_2019_Outlook_Final.pdf.

  • Taschetto, A. S., C. C. Ummenhofer, M. F. Stuecker, D. Dommenget, K. Ashok, R. R. Rodrigues, and S.-W. Yeh, 2020: ENSO atmospheric teleconnections. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 309–335, https://doi.org/10.1002/9781119548164.ch14.

  • Thompson, P. R., G. T. Mitchum, C. Vonesch, and J. Li, 2013: Variability of winter storminess in the eastern United States during the twentieth century from tide gauges. J. Climate, 26, 97139726, https://doi.org/10.1175/JCLI-D-12-00561.1.

    • Search Google Scholar
    • Export Citation
  • Tibshirani, R. J., and B. Efron, 1993: An Introduction to the Bootstrap. Monographs on Statistics and Applied Probability, Vol. 57, Chapman and Hall/CRC, 456 pp.

  • Trenberth, K. E., 1996: El Niño Southern Oscillation (ENSO). Encyclopedia of Ocean Sciences, 3rd ed. J. Kirk Cochran, H. J. Bokuniewicz, and P. L. Yager, Eds., Elsevier, 420–432, https://doi.org/10.1016/B978-0-12-409548-9.04082-3.

  • Tseng, K.-C., E. Maloney, and E. A. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. A. Barnes, 2020: The consistency of MJO teleconnection patterns on interannual time scales. J. Climate, 33, 34713486, https://doi.org/10.1175/JCLI-D-19-0510.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2019: Sub-seasonal to seasonal prediction of weather extremes. Sub-Seasonal to Seasonal Prediction: The Gap between Weather and Climate Forecasting, A. W. Robertson and F. Vitart, Eds., Elsevier, 365–386.

  • Warren-Myers, G., and A. Hurlimann, 2022: Climate change and risk to real estate. A Research Agenda for Real Estate, P. Tiwari and J. T. Miao, Eds., Edward Elgar Publishing, 139–164.

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodworth, P. L., and Coauthors, 2019: Forcing factors affecting sea level changes at the coast. Surv. Geophys., 40, 13511397, https://doi.org/10.1007/s10712-019-09531-1.

    • Search Google Scholar
    • Export Citation
  • Yadav, P., and D. M. Straus, 2017: Circulation response to fast and slow MJO episodes. Mon. Wea. Rev., 145, 15771596, https://doi.org/10.1175/MWR-D-16-0352.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185206, https://doi.org/10.1002/2017RG000568.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, C., and E. K. M. Chang, 2019: The role of MJO propagation, lifetime, and intensity on modulating the temporal evolution of the MJO extratropical response. J. Geophys. Res. Atmos., 124, 53525378, https://doi.org/10.1029/2019JD030258.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 617 617 44
Full Text Views 212 212 14
PDF Downloads 214 214 18