The Development and Accuracy Assessment of Wet Bulb Globe Temperature Forecasts

Jordan Clark aThe University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
bNicholas Institute for Energy, Environment and Sustainability, Duke University, Durham, North Carolina

Search for other papers by Jordan Clark in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0164-2497
,
Charles E. Konrad aThe University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
cNOAA Southeast Regional Climate Center (SERCC), Chapel Hill, North Carolina

Search for other papers by Charles E. Konrad in
Current site
Google Scholar
PubMed
Close
, and
Andrew Grundstein dDepartment of Geography, The University of Georgia, Athens, Georgia

Search for other papers by Andrew Grundstein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature (WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center (SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts are compared with in situ WBGT measurements (during the summers of 2019–21) and estimates from weather stations to assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.6°C of observations on average and showed less bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISA WBGT forecast was more accurate for the most dangerous conditions (WBGT > 31°C), although this resulted in higher false alarms for these extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered from wind by better accounting for the influences of land cover on 2-m wind speed. Accurate forecasts are more challenging for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite, real-time WBGT measurements remain critical.

Significance Statement

This research assesses the accuracy of wet bulb globe temperature (WBGT) forecasts. WBGT is a heat stress index that accounts for impacts of air temperature, humidity, wind, and radiation. It is widely used in occupational, athletic, and military settings for heat stress assessment, yet WBGT forecasting in the United States is a relatively new development. These forecasts can be used by decision-makers to better plan activities. We found that WBGT forecasts by NOAA’s Southeast Regional Climate Center and Carolinas Integrated Sciences and Assessments were within 0.6°C of observations overall in North Carolina and less biased than forecasts based on methods used by the U.S. National Weather Service, which had larger, colder biases that present potential safety issues in planning.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Clark, jordan@alumni.unc.edu

Abstract

Heat is the leading cause of weather-related death in the United States. Wet bulb globe temperature (WBGT) is a heat stress index commonly used among active populations for activity modification, such as outdoor workers and athletes. Despite widespread use globally, WBGT forecasts have been uncommon in the United States until recent years. This research assesses the accuracy of WBGT forecasts developed by NOAA’s Southeast Regional Climate Center (SERCC) and the Carolinas Integrated Sciences and Assessments (CISA). It also details efforts to refine the forecast by accounting for the impact of surface roughness on wind using satellite imagery. Comparisons are made between the SERCC/CISA WBGT forecast and a WBGT forecast modeled after NWS methods. Additionally, both of these forecasts are compared with in situ WBGT measurements (during the summers of 2019–21) and estimates from weather stations to assess forecast accuracy. The SERCC/CISA WBGT forecast was within 0.6°C of observations on average and showed less bias than the forecast based on NWS methods across North Carolina. Importantly, the SERCC/CISA WBGT forecast was more accurate for the most dangerous conditions (WBGT > 31°C), although this resulted in higher false alarms for these extreme conditions compared to the NWS method. In particular, this work improved the forecast for sites more sheltered from wind by better accounting for the influences of land cover on 2-m wind speed. Accurate forecasts are more challenging for sites with complex microclimates. Thus, appropriate caution is necessary when interpreting forecasts and onsite, real-time WBGT measurements remain critical.

Significance Statement

This research assesses the accuracy of wet bulb globe temperature (WBGT) forecasts. WBGT is a heat stress index that accounts for impacts of air temperature, humidity, wind, and radiation. It is widely used in occupational, athletic, and military settings for heat stress assessment, yet WBGT forecasting in the United States is a relatively new development. These forecasts can be used by decision-makers to better plan activities. We found that WBGT forecasts by NOAA’s Southeast Regional Climate Center and Carolinas Integrated Sciences and Assessments were within 0.6°C of observations overall in North Carolina and less biased than forecasts based on methods used by the U.S. National Weather Service, which had larger, colder biases that present potential safety issues in planning.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jordan Clark, jordan@alumni.unc.edu
Save
All Time Past Year Past 30 Days
Abstract Views 380 380 22
Full Text Views 125 125 20
PDF Downloads 145 145 22