The First Operational Version of Taiwan Central Weather Bureau’s One-Tier Global Atmosphere–Ocean Coupled Forecast System for Seasonal Prediction

Hann-Ming Henry Juang bEnvironmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland
dDepartment of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Hann-Ming Henry Juang in
Current site
Google Scholar
PubMed
Close
,
Tzu-Yu Wu dDepartment of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Tzu-Yu Wu in
Current site
Google Scholar
PubMed
Close
,
Pang-Yen Brian Liu aMeteorology Research and Development Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Pang-Yen Brian Liu in
Current site
Google Scholar
PubMed
Close
,
Hsin-Yi Lin dDepartment of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Hsin-Yi Lin in
Current site
Google Scholar
PubMed
Close
,
Ching-Teng Lee aMeteorology Research and Development Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Ching-Teng Lee in
Current site
Google Scholar
PubMed
Close
,
Mien-Tze Kueh fResearch Center for Environmental Changes, Academia Sinica, Taipei, Taiwan

Search for other papers by Mien-Tze Kueh in
Current site
Google Scholar
PubMed
Close
,
Jia-Fong Fan dDepartment of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Jia-Fong Fan in
Current site
Google Scholar
PubMed
Close
,
Jen-Her River Chen cMeteorological Information Center, Central Weather Bureau, Taipei, Taiwan

Search for other papers by Jen-Her River Chen in
Current site
Google Scholar
PubMed
Close
,
Mong-Ming Lu eDepartment of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Search for other papers by Mong-Ming Lu in
Current site
Google Scholar
PubMed
Close
, and
Pay-Liam Lin dDepartment of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

Search for other papers by Pay-Liam Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The first version of the Taiwan Central Weather Bureau one-tier (TCWB1T) fully coupled global atmospheric and oceanic modeling forecast system had been developed and implemented as a routine operation for seasonal prediction at Central Weather Bureau (CWB) in 2017, with a minor revision in 2020. Based on NCEP CFSv1, the global atmospheric model in NCEP CFSv1 was replaced by CWB’s atmospheric global spectral model (GSM) and coupled with the GFDL MOM3. Several parameters have been tested and tuned in the CWB atmospheric GSM, achieving an optimal configuration with better sea surface temperature (SST) predictions for integration more than one year. Using NCEP CFSR as the initial condition, TCWB1T conducted hindcasts from 1982 to 2011 and forecasts from 2012 to 2019 to analyze its performance. The results of these hindcasts and forecasts show that the TCWB1T can make useful predictions as verified against the observations of OISST, ERSST, CFSR, and GPCP based on the methods of EOF, RMSE, anomaly correlation, ranked probability skill score (RPSS), reliability diagram (RD), and relative operating characteristics (ROCs). TCWB1T also has the same level of skill scores as NCEP CFSv2 and/or the ECMWF fifth-generation seasonal forecast system (SEAS5), based on EOF, anomaly pattern correlation, climatological bias, RMSE, temporal correlation, and anomaly correlation percentage of forecast skill. TCWB1T shows forecast skill that is better in winter than in summer. Overall, it indicates that TCWB1T can be used for seasonal ENSO predictions.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hann-Ming Henry Juang, henry.juang@g.ncu.edu.tw

Abstract

The first version of the Taiwan Central Weather Bureau one-tier (TCWB1T) fully coupled global atmospheric and oceanic modeling forecast system had been developed and implemented as a routine operation for seasonal prediction at Central Weather Bureau (CWB) in 2017, with a minor revision in 2020. Based on NCEP CFSv1, the global atmospheric model in NCEP CFSv1 was replaced by CWB’s atmospheric global spectral model (GSM) and coupled with the GFDL MOM3. Several parameters have been tested and tuned in the CWB atmospheric GSM, achieving an optimal configuration with better sea surface temperature (SST) predictions for integration more than one year. Using NCEP CFSR as the initial condition, TCWB1T conducted hindcasts from 1982 to 2011 and forecasts from 2012 to 2019 to analyze its performance. The results of these hindcasts and forecasts show that the TCWB1T can make useful predictions as verified against the observations of OISST, ERSST, CFSR, and GPCP based on the methods of EOF, RMSE, anomaly correlation, ranked probability skill score (RPSS), reliability diagram (RD), and relative operating characteristics (ROCs). TCWB1T also has the same level of skill scores as NCEP CFSv2 and/or the ECMWF fifth-generation seasonal forecast system (SEAS5), based on EOF, anomaly pattern correlation, climatological bias, RMSE, temporal correlation, and anomaly correlation percentage of forecast skill. TCWB1T shows forecast skill that is better in winter than in summer. Overall, it indicates that TCWB1T can be used for seasonal ENSO predictions.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hann-Ming Henry Juang, henry.juang@g.ncu.edu.tw
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, D., and Coauthors, 2003: Comparison of the ECMWF seasonal forecast systems 1 and 2, including the relative performance for the 1997/8 El Nino. ECMWF Tech. Memo. 404, 95 pp., https://doi.org/10.21957/bnb7k5yjf.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Banzon, V. F., R. W. Reynolds, and T. M. Smith, 2010: The role of satellite data in extended reconstruction of sea surface temperatures. Proc. “Oceans from Space” Venice 2010, Venice, Italy, European Commission, 27–28, https://doi.org/10.2788/8394.

  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, https://doi.org/10.1007/s00382-013-1845-2.

    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011: The ERA-Interim archive version 2.0. ERA Rep. Series 1, 27 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.

  • Buizza, R., A. Hollingsworth, F. Lalaurette, and A. Ghelli, 1999: Probabilistic predictions of precipitation using the ECMWF ensemble prediction system. Wea. Forecasting, 14, 168189, https://doi.org/10.1175/1520-0434(1999)014<0168:PPOPUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, https://doi.org/10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Han, J., and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Wea. Forecasting, 26, 520533, https://doi.org/10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H. C., T. C. Pagano, S. Sorooshiam, and R. Bales, 2002: Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bull. Amer. Meteor. Soc., 83, 683698, https://doi.org/10.1175/1520-0477(2002)083<0683:CBESCF>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, M., A. Kumar, and A. Leetmaa, 1994: An experimental coupled forecast system at the National Meteorological Center. Some early results. Tellus, 46A, 398419, https://doi.org/10.1034/j.1600-0870.1994.t01-3-00006.x.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and Coauthors, 2019: SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev., 12, 10871117, https://doi.org/10.5194/gmd-12-1087-2019.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2008: Proper scores for probability forecasts can never be equitable. Mon. Wea. Rev., 136, 15051510, https://doi.org/10.1175/2007MWR2194.1.

    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., 2004: A reduced spectral transform for the NCEP seasonal forecast global spectral atmospheric model. Mon. Wea. Rev., 132, 10191035, https://doi.org/10.1175/1520-0493(2004)132<1019:ARSTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Juang, H.-M. H., 2007: Semi-Lagrangian advection without iteration. Proc. Conf. on Weather Analysis and Forecasting, Taoyan, Taiwan, Central Weather Bureau.

  • Juang, H.-M. H., 2008: Mass conserving and positive-definite semi-Lagrangian advection in NCEP GFS: Decomposition of massively parallel computing without halo. Proc. 13th Workshop on Use of High Performance Computing in Meteorology, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 50, https://www.ecmwf.int/sites/default/files/elibrary/2008/15346-mass-conserving-and-positive-definite-semi-lagrangian-advection-ncep-gfs-decomposition.pdf.

  • Juang, H.-M. H., and M. Kanamitsu, 2001: The computational performance of the NCEP seasonal forecast model on Fujitsu VPP5000 at ECMWF. Developments in Teracomputing: Proc. Ninth ECMWF Workshop on the Use of High-Performance Computing in Meteorology, Reading, United Kingdom, World Scientific, 338–347, https://doi.org/10.1142/9789812799685_0029.

  • Juang, H.-M. H., W.-K. Tao, X. Zeng, C.-L. Shie, S. Lang, and J. Simpson, 2007: Parallelization of the NASA Goddard cumulus ensemble model for massively parallel computing. Terr. Atmos. Ocean. Sci., 18, 593622, https://doi.org/10.3319/TAO.2007.18.3.593(A).

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., and Coauthors, 2002: NCEP dynamical seasonal forecast system 2000. Bull. Amer. Meteor. Soc., 83, 10191038, https://doi.org/10.1175/1520-0477(2002)083<1019:NDSFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP global data assimilation system. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Search Google Scholar
    • Export Citation
  • Liou, C.-S., C.-T. Terng, W.-S. Kau, T. Rosmond, C.-S. Chen, J.-H. Chen, and C.-Y. Tsai, 1989: Global weather forecast system at Central Weather Bureau. Pap. Meteor. Res., 12, 205228.

    • Search Google Scholar
    • Export Citation
  • Liou, C.-S., and Coauthors, 1997: The second-generation global forecast system at the Central Weather Bureau in Taiwan. Wea. Forecasting, 12, 653663, https://doi.org/10.1175/1520-0434(1997)012<0653:TSGGFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mason, I. B., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Messié, M., and F. Chavez, 2011: Global modes of sea surface temperature variability in relation to regional climate indices. J. Climate, 24, 43144331, https://doi.org/10.1175/2011JCLI3941.1.

    • Search Google Scholar
    • Export Citation
  • Müller, W. A., C. Appenzeller, F. J. Doblas-Reyes, and M. A. Liniger, 2005: A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J. Climate, 18, 15131523, https://doi.org/10.1175/JCLI3361.1.

    • Search Google Scholar
    • Export Citation
  • Pacanowski, R. C., and S. M. Griffies, 1999: The MOM 3 manual. Geophysical Fluid Dynamics Laboratory Tech. Rep., 708 pp., https://mom-ocean.github.io/assets/pdfs/MOM3_manual.pdf.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2009: What’s new in version 2. OISST web page. NOAA/NCDC, www.ncdc.noaa.gov/sst/papers/oisst_daily_v02r00_version2-features.pdf.

  • Roberts, C. D., R. Senan, F. Molteni, S. Boussetta, M. Mayer, and S. P. E. Keeley, 2018: Climate model configurations of the ECMWF integrated forecasting system (ECMWF-IFS cycle 43r1) for HighResMIP. Geosci. Model Dev., 11, 36813712, https://doi.org/10.5194/gmd-11-3681-2018.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp., https://pure.mpg.de/rest/items/item_995269_4/component/file_995268/content.

  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, https://doi.org/10.1175/JCLI-D-12-00823.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 24662477, https://doi.org/10.1175/1520-0442(2004)017<2466:IEROS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T., and Coauthors, 2018: SEAS5 and the future evolution of the long-range forecast system. ECMWF Tech. Memo. 835, 83 pp., https://www.ecmwf.int/sites/default/files/elibrary/2018/18750-seas5-and-future-evolution-long-range-forecast-system.pdf.

  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Y. Takaya, 2021: Lagged ensembles in sub-seasonal predictions. Quart. J. Roy. Meteor. Soc., 147, 32273242, https://doi.org/10.1002/qj.4125.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., M. A. Liniger, and C. Appenzeller, 2007: The discrete Brier and ranked probability skill scores. Mon. Wea. Rev., 135, 118124, https://doi.org/10.1175/MWR3280.1.

    • Search Google Scholar
    • Export Citation
  • Weng, S.-P., Y.-C. Tung, and W.-H. Huang, 2005: Predictions of global sea surface temperature anomalies: Introduction of CWB/OPGSST1.1 forecast system. 2005 Conf. on Weather Analysis and Forecasting, Taipei, Taiwan, 341–345, https://photino.cwa.gov.tw/rdcweb/lib/cd/cd01conf/dissertation/2005-1/072.pdf.

  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, T.-Y., H.-M. H. Juang, Y.-L. Chen, P.-Y. Liu, S.-I. Lin, J.-H. Chen, and M.-M. Lu, 2019: CWB CFS 1-Tier hindcast analysis and forecast verification. Climate Prediction S&T Digest: NWS Science & Technology Infusion Climate Bulletin Supplement, 43rd Climate Diagnostics and Prediction Workshop 2018, Santa Barbara, CA, NOAA, 172174, https://doi.org/10.25923/ae2c-v522.

  • Xue, Y., B. Huang, Z.-Z. Hu, A. Kumar, C. Wen, D. Behringer, and S. Nadiga, 2011: An assessment of oceanic variability in the NCEP Climate Forecast System Reanalysis. Climate Dyn., 37, 25112539, https://doi.org/10.1007/s00382-010-0954-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 398 399 48
Full Text Views 125 125 16
PDF Downloads 134 134 16