Improving the Statistical Representation of Tropical Cyclone In-Storm Sea Surface Temperature Cooling

Joshua B. Wadler aEmbry-Riddle Aeronautical University, Department of Applied Aviation Sciences, Daytona Beach, Florida

Search for other papers by Joshua B. Wadler in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0430-9246
,
Joseph J. Cione bNOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Joseph J. Cione in
Current site
Google Scholar
PubMed
Close
,
Samantha Michlowitz cNational Weather Service Louisville Forecast Office, Louisville, Kentucky

Search for other papers by Samantha Michlowitz in
Current site
Google Scholar
PubMed
Close
,
Benjamin Jaimes de la Cruz dUniversity of Miami, Department of Ocean Sciences, Miami, Florida

Search for other papers by Benjamin Jaimes de la Cruz in
Current site
Google Scholar
PubMed
Close
, and
Lynn K. Shay dUniversity of Miami, Department of Ocean Sciences, Miami, Florida

Search for other papers by Lynn K. Shay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling underneath a tropical cyclone (TC) inner core. To build predictive equations, SST cooling is first related to single variable predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four predictors and are built with knowledge about the prestorm ocean structure (e.g., OHC), storm intensity (e.g., minimum sea level pressure), initial SST values before storm arrival, and latitude. The best-performing SST cooling equations are broken up into two ocean regimes: when the ocean heat content is less than 60 kJ cm−2 (greater spread in SST cooling values) and when the ocean heat content is greater than 60 kJ cm−2 (SST cooling is always less than 2°C), which demonstrates the importance of the prestorm oceanic thermal structure on the in-storm SST value. The new equations are compared to what is currently used in a statistical–dynamical model. Overall, since the ocean providing the latent heat and sensible heat fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm upper-oceanic thermal structure for accurate TC intensity forecasts.

Significance Statement

The ocean provides the heat and moisture necessary for tropical cyclone (TC) intensification. Since the heat and moisture transfer depend on the sea surface temperature (SST), we create statistical equations for the prediction of SST underneath the storm. The variables we use combine the initial SST before the storm arrives, the upper-ocean thermal structure, and the strength and translation speed of the storm. The predictive equations for SST are evaluated for how well they improve TC intensity forecasts. The best-performing equations can be used for prediction in operational statistical models, which can aid intensity forecasts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua B. Wadler, wadlerj@erau.edu

Abstract

This study uses fixed buoy time series to create an algorithm for sea surface temperature (SST) cooling underneath a tropical cyclone (TC) inner core. To build predictive equations, SST cooling is first related to single variable predictors such as the SST before storm arrival, ocean heat content (OHC), mixed layer depth, sea surface salinity and stratification, storm intensity, storm translation speed, and latitude. Of all the single variable predictors, initial SST before storm arrival explains the greatest amount of variance for the change in SST during storm passage. Using a combination of predictors, we created nonlinear predictive equations for SST cooling. In general, the best predictive equations have four predictors and are built with knowledge about the prestorm ocean structure (e.g., OHC), storm intensity (e.g., minimum sea level pressure), initial SST values before storm arrival, and latitude. The best-performing SST cooling equations are broken up into two ocean regimes: when the ocean heat content is less than 60 kJ cm−2 (greater spread in SST cooling values) and when the ocean heat content is greater than 60 kJ cm−2 (SST cooling is always less than 2°C), which demonstrates the importance of the prestorm oceanic thermal structure on the in-storm SST value. The new equations are compared to what is currently used in a statistical–dynamical model. Overall, since the ocean providing the latent heat and sensible heat fluxes necessary for TC intensification, the results highlight the importance for consistently obtaining accurate in-storm upper-oceanic thermal structure for accurate TC intensity forecasts.

Significance Statement

The ocean provides the heat and moisture necessary for tropical cyclone (TC) intensification. Since the heat and moisture transfer depend on the sea surface temperature (SST), we create statistical equations for the prediction of SST underneath the storm. The variables we use combine the initial SST before the storm arrives, the upper-ocean thermal structure, and the strength and translation speed of the storm. The predictive equations for SST are evaluated for how well they improve TC intensity forecasts. The best-performing equations can be used for prediction in operational statistical models, which can aid intensity forecasts.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joshua B. Wadler, wadlerj@erau.edu
Save
  • Balaguru, K., G. R. Foltz, L. R. Leung, S. M. Hagos, and D. R. Judi, 2018: On the use of ocean dynamic temperature for hurricane intensity forecasting. Wea. Forecasting, 33, 411418, https://doi.org/10.1175/WAF-D-17-0143.1.

    • Search Google Scholar
    • Export Citation
  • Balaguru, K., and Coauthors, 2020: Characterizing tropical cyclones in the Energy Exascale Earth System Model version 1. J. Adv. Model. Earth Syst., 12, e2019MS002024, https://doi.org/10.1029/2019MS002024.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. D., 1987: Improved depth and temperature conversion equations for Sippican AXBTs. J. Atmos. Oceanic Technol., 4, 545551, https://doi.org/10.1175/1520-0426(1987)004<0545:IDATCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, https://doi.org/10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., J. A. Cummings, J. M. Schmidt, E. R. Sanabia, and S. R. Jayne, 2017: Targeted ocean sampling guidance for tropical cyclones. J. Geophys. Res. Oceans, 122, 35053518, https://doi.org/10.1002/2017JC012727.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, https://doi.org/10.1175/MWR-D-13-00380.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, https://doi.org/10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., E. A. Kalina, J. A. Zhang, and E. W. Uhlhorn, 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, https://doi.org/10.1175/MWR-D-12-00070.1.

    • Search Google Scholar
    • Export Citation
  • Da, N. D., G. R. Foltz, and K. Balaguru, 2021: Observed global increases in tropical cyclone-induced ocean cooling and primary production. Geophys. Res. Lett., 48, e2021GL092574, https://doi.org/10.1029/2021GL092574.

    • Search Google Scholar
    • Export Citation
  • Dare, R. A., and J. L. McBride, 2011: Sea surface temperature response to tropical cyclones. Mon. Wea. Rev., 139, 37983808, https://doi.org/10.1175/MWR-D-10-05019.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, https://doi.org/10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2018: Resolving tropical cyclone intensity in models. Geophys. Res. Lett., 45, 20822087, https://doi.org/10.1002/2017GL076966.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements in the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J., M. DeMaria, and J. A. Knaff, 2006: Improvement of Advanced Microwave Sounder Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, https://doi.org/10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 446, https://doi.org/10.3389/fmars.2019.00446.

    • Search Google Scholar
    • Export Citation
  • Domingues, R., and Coauthors, 2021: Ocean conditions and the intensification of three major Atlantic hurricanes in 2017. Mon. Wea. Rev., 149, 12651286, https://doi.org/10.1175/MWR-D-20-0100.1.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., T. S. Fraim, and R. N. Trapnell Jr., 1976: A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 11531162, https://doi.org/10.1029/JC081i006p01153.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fisher, E. L., 1958: Hurricanes and the sea surface temperature field. J. Atmos. Sci., 15, 328333, https://doi.org/10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garcia, H. E., and Coauthors, 2019: World Ocean Atlas 2018: Product documentation. 20 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18documentation.pdf.

  • Gilhousen, D. B., 1988: Quality control of meteorological data from automated marine stations. Preprints, Fourth Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Miami, FL, Amer. Meteor. Soc., 113–117.

  • Gilhousen, D. B., 1998: Improved real-time quality control of NDBC measurements. Preprints, 10th Symp. on Meteorological Observations and Instrumentation, Phoenix, AZ, Amer. Meteor. Soc., 363–366.

  • Goni, G. J., and Coauthors, 2017: Autonomous and Lagrangian ocean observations for Atlantic tropical cyclone studies and forecasts. Oceanography, 30, 92103, https://doi.org/10.5670/oceanog.2017.227.

    • Search Google Scholar
    • Export Citation
  • Hidaka, K., and Y. Akiba, 1955: Upwelling induced by a circular wind system. Rec. Oceanogr. Works Japan, 2, 718.

  • Hlywiak, J., and D. S. Nolan, 2019: The influence of oceanic barrier layers on tropical cyclone intensity as determined through idealized, coupled numerical simulations. J. Phys. Oceanogr., 49, 17231745, https://doi.org/10.1175/JPO-D-18-0267.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., C. Liu, V. Banzon, E. Freeman, G. Graham, B. Hankins, T. Smith, and H.-M. Zhang, 2021: Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) version 2.1. J. Climate, 34, 29232939, https://doi.org/10.1175/JCLI-D-20-0166.1.

    • Search Google Scholar
    • Export Citation
  • Jacob, S. D., L. K. Shay, A. J. Mariano, and P. G. Black, 2000: The 3-D oceanic mixed-layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 14071429, https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, https://doi.org/10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, https://doi.org/10.1175/2010JPO4309.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., and L. K. Shay, 2015: Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of Tropical Cyclone Isaac (2012): Observations and theory. J. Phys. Oceanogr., 45, 16671689, https://doi.org/10.1175/JPO-D-14-0176.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes de la Cruz, B., L. K. Shay, J. B. Wadler, and J. E. Rudzin, 2021: On the hyperbolicity of the bulk air–sea heat flux functions: Insights into the efficiency of air–sea moisture disequilibrium for tropical cyclone intensification. Mon. Wea. Rev., 149, 15171534, https://doi.org/10.1175/MWR-D-20-0324.1.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., W. B. Owens, P. E. Robbins, A. K. Ekholm, N. M. Bogue, and E. R. Sanabia, 2022: The air-launched autonomous micro observer. J. Atmos. Oceanic Technol., 39, 491502, https://doi.org/10.1175/JTECH-D-21-0046.1.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Le Hénaff, M., and Coauthors, 2021: The role of the Gulf of Mexico ocean conditions in the intensification of Hurricane Michael (2018). J. Geophys. Res. Oceans, 126, e2020JC016969, https://doi.org/10.1029/2020JC016969.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean cooling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Search Google Scholar
    • Export Citation
  • Lu, Z., G. Wang, and X. Shang, 2021: Inner-core sea surface cooling induced by a tropical cyclone. J. Phys. Oceanogr., 51, 33853400, https://doi.org/10.1175/JPO-D-21-0102.1.

    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12A (1), 120, https://doi.org/10.3402/tellusa.v12i1.9351.

    • Search Google Scholar
    • Export Citation
  • Mei, W., and C. Pasquero, 2013: Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26, 37453765, https://doi.org/10.1175/JCLI-D-12-00125.1.

    • Search Google Scholar
    • Export Citation
  • Meinig, C., and Coauthors, 2019: Public-private partnerships to advance regional ocean observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/fmars.2019.00448.

    • Search Google Scholar
    • Export Citation
  • Meissner, T., F. J. Wentz, D. LeVine, and J. Scott, 2014: Aquarius salinity retrieval. Algorithm Theoretical Basis Doc., Addendum III, RSS Rep. 060414, 24 pp., https://images.remss.com/papers/rsstech/2014_Meissner_Aquarius_ATBD_Addendum3.pdf.

  • Meyers, P. C., L. K. Shay, and J. K. Brewster, 2014: Development and analysis of the systematically merged Atlantic regional temperature and salinity climatology for oceanic heat content estimates. J. Atmos. Oceanic Technol., 31, 131149, https://doi.org/10.1175/JTECH-D-13-00100.1.

    • Search Google Scholar
    • Export Citation
  • Miles, T. N., and Coauthors, 2021: Uncrewed ocean gliders and saildrones support hurricane forecasting and research. Oceanography, 34, 7881, https://doi.org/10.5670/oceanog.2021.supplement.02-28.

    • Search Google Scholar
    • Export Citation
  • Mogensen, K. S., L. Magnusson, and J. R. Bidlot, 2017: Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model. J. Geophys. Res. Oceans, 122, 43924412, https://doi.org/10.1002/2017JC012753.

    • Search Google Scholar
    • Export Citation
  • Mrvalijevic, R. K., and Coauthors, 2013: Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., 40, 316321, https://doi.org/10.1029/2012GL054282.

    • Search Google Scholar
    • Export Citation
  • Palmén, E., 1948: On the formation and structure of tropical hurricanes. Geophysika, 3, 2638.

  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 2009: Metrics of hurricane-ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, https://doi.org/10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reul, N., Y. Quilfen, B. Chapron, S. Fournier, V. Kudryavtsev, and R. Sabia, 2014: Multisensor observations of the Amazon-Orinoco River plume interactions with hurricanes. J. Geophys. Res. Oceans, 119, 82718295, https://doi.org/10.1002/2014JC010107.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, B. Jaimes, and J. K. Brewster, 2017: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy. J. Geophys. Res. Oceans, 122, 10571071, https://doi.org/10.1002/2016JC012339.

    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and W. E. Johns, 2018: The influence of the barrier layer on SST response during tropical cyclone wind forcing using idealized experiments. J. Phys. Oceanogr., 48, 14711478, https://doi.org/10.1175/JPO-D-17-0279.1.

    • Search Google Scholar
    • Export Citation
  • Rudzin, J. E., L. K. Shay, and B. Jaimes de la Cruz, 2019: The impact of the Amazon–Orinoco River plume on enthalpy flux and air–sea interaction within Caribbean Sea tropical cyclones. Mon. Wea. Rev., 147, 931950, https://doi.org/10.1175/MWR-D-18-0295.1.

    • Search Google Scholar
    • Export Citation
  • Sanabia, E. R., and S. R. Jayne, 2020: Ocean observations under two major hurricanes: Evolution of the response across the storm wakes. AGU Adv., 1, e2019AV000161, https://doi.org/10.1029/2019AV000161.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, J. B. Girton, and D. C. Webb, 2007: Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604, https://doi.org/10.1029/2007GL029679.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., J. F. Price, and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, https://doi.org/10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and E. Uhlhorn, 2008: Loop Current response to Hurricanes Isidore and Lili. Mon. Wea. Rev., 136, 32483274, https://doi.org/10.1175/2007MWR2169.1.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20 22720 248, https://doi.org/10.1029/92JC01586.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., A. J. Mariano, S. D. Jacob, and E. H. Ryan, 1998: Mean and near-inertial ocean current response to Hurricane Gilbert. J. Phys. Oceanogr., 28, 858889, https://doi.org/10.1175/1520-0485(1998)028<0858:MANIOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and Coauthors, 2011: Airborne ocean surveys of the Loop Current complex from NOAA WP-3D in support of the Deep Water Horizon oil spill. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 131–151.

  • Shay, L. K., J. Brewster, E. Maturi, D. Donahue, P. Meyers, and C. McCaskill, 2019a: Satellite products and service review board: Algorithm Theoretical Basis Document: Satellite-derived oceanic heat content product, version 3.2. NOAA/RSMAS, 49 pp., https://www.ospo.noaa.gov/Products/ocean/assets/ATBD_OHC_NESDIS_V3.2.pdf.

  • Shay, L. K., J. Brewster, B. Jaimes, C. Gordon, K. Fennel, P. Furze, H. Fargher, and R. He, 2019b: Physical and biochemical structure measured by APEX-EM floats. 2019 IEEE/OES Twelfth Current, Waves and Turbulence Measurement (CWTM), San Diego, CA, Institute of Electrical and Electronics Engineers, 1–6, https://doi.org/10.1109/CWTM43797.2019.8955168.

  • Suda, K., 1943: The Science of the Sea (Kaiyō Kagaku). Kokin Shoin, 284 pp.

  • Testor, P., and Coauthors, 2019: OceanGliders: A component of the integrated GOOS. Front. Mar. Sci., 6, 422, https://doi.org/10.3389/fmars.2019.00422.

    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. A. Zhang, B. Jaimes, and L. K. Shay, 2018: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 146, 35453565, https://doi.org/10.1175/MWR-D-18-0090.1.

    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., J. J. Cione, J. A. Zhang, E. A. Kalina, and J. Kaplan, 2022: The effects of environmental wind shear direction on tropical cyclone boundary layer thermodynamics and intensity change from multiple observational datasets. Mon. Wea. Rev., 150, 115134, https://doi.org/10.1175/MWR-D-21-0022.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans, 52, 367385, https://doi.org/10.1016/j.dynatmoce.2011.05.002.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, https://doi.org/10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2018: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp., https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf.

All Time Past Year Past 30 Days
Abstract Views 360 360 187
Full Text Views 110 110 63
PDF Downloads 126 126 74