Subseasonal Potential Predictability of Horizontal Water Vapor Transport and Precipitation Extremes in the North Pacific

Timothy B. Higgins aDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Timothy B. Higgins in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2204-9193
,
Aneesh C. Subramanian aDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Aneesh C. Subramanian in
Current site
Google Scholar
PubMed
Close
,
Will E. Chapman bNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Will E. Chapman in
Current site
Google Scholar
PubMed
Close
,
David A. Lavers cEuropean Centre for Medium-Range Weather Forecasting, Reading, United Kingdom

Search for other papers by David A. Lavers in
Current site
Google Scholar
PubMed
Close
, and
Andrew C. Winters aDepartment of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Andrew C. Winters in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate forecasts of weather conditions have the potential to mitigate the social and economic damages they cause. To make informed decisions based on forecasts, it is important to determine the extent to which they could be skillful. This study focuses on subseasonal forecasts out to a lead time of four weeks. We examine the differences between the potential predictability, which is computed under the assumption of a “perfect model,” of integrated vapor transport (IVT) and precipitation under extreme conditions in subseasonal forecasts across the northeast Pacific. Our results demonstrate significant forecast skill of extreme IVT and precipitation events (exceeding the 90th percentile) into week 4 for specific areas, particularly when anomalously wet conditions are observed in the true model state. This forecast skill during weeks 3 and 4 is closely associated with a zonal extension of the North Pacific jet. These findings of the source of skillful subseasonal forecasts over the U.S. West Coast could have implications for water management in these regions susceptible to drought and flooding extremes. Additionally, they may offer valuable insights for governments and industries on the U.S. West Coast seeking to make informed decisions based on extended weather prediction.

Significance Statement

The purpose of this study is to understand the differences between the ability to predict high amounts of the transport of water vapor and precipitation over the North Pacific 3 and 4 weeks into the future. The results indicate that differences do exist in a region that is relevant to precipitation on the U.S. West Coast. To physically explain why differences in predictability exist, the relationship between weekly extremes of the extension of the jet stream, IVT, and precipitation over the North Pacific is explored. These findings may impact decisions relevant to water management on the U.S. West Coast susceptible to drought and flooding extremes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy B. Higgins, timothy.higgins@colorado.edu

Abstract

Accurate forecasts of weather conditions have the potential to mitigate the social and economic damages they cause. To make informed decisions based on forecasts, it is important to determine the extent to which they could be skillful. This study focuses on subseasonal forecasts out to a lead time of four weeks. We examine the differences between the potential predictability, which is computed under the assumption of a “perfect model,” of integrated vapor transport (IVT) and precipitation under extreme conditions in subseasonal forecasts across the northeast Pacific. Our results demonstrate significant forecast skill of extreme IVT and precipitation events (exceeding the 90th percentile) into week 4 for specific areas, particularly when anomalously wet conditions are observed in the true model state. This forecast skill during weeks 3 and 4 is closely associated with a zonal extension of the North Pacific jet. These findings of the source of skillful subseasonal forecasts over the U.S. West Coast could have implications for water management in these regions susceptible to drought and flooding extremes. Additionally, they may offer valuable insights for governments and industries on the U.S. West Coast seeking to make informed decisions based on extended weather prediction.

Significance Statement

The purpose of this study is to understand the differences between the ability to predict high amounts of the transport of water vapor and precipitation over the North Pacific 3 and 4 weeks into the future. The results indicate that differences do exist in a region that is relevant to precipitation on the U.S. West Coast. To physically explain why differences in predictability exist, the relationship between weekly extremes of the extension of the jet stream, IVT, and precipitation over the North Pacific is explored. These findings may impact decisions relevant to water management on the U.S. West Coast susceptible to drought and flooding extremes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Timothy B. Higgins, timothy.higgins@colorado.edu
Save
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amini, S., and D. M. Straus, 2019: Control of storminess over the Pacific and North America by circulation regimes: The role of large-scale dynamics in weather extremes. Climate Dyn., 52, 47494770, https://doi.org/10.1007/s00382-018-4409-7.

    • Search Google Scholar
    • Export Citation
  • Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. J. Atmos. Sci., 67, 13611381, https://doi.org/10.1175/2009JAS3270.1.

    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and T. M. Smith, 1996: Specification and prediction of global surface temperature and precipitation from global SST using CCA. J. Climate, 9, 26602697, https://doi.org/10.1175/1520-0442(1996)009<2660:SAPOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brady, R. X., and A. Spring, 2021: climpred: Verification of weather and climate forecasts. J. Open Source Software, 6, 2781, https://doi.org/10.21105/joss.02781.

    • Search Google Scholar
    • Export Citation
  • Brands, S., J. M. Gutiérrez, and D. San-Martín, 2017: Twentieth-century atmospheric river activity along the west coasts of Europe and North America: Algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Climate Dyn., 48, 27712795, https://doi.org/10.1007/s00382-016-3095-6.

    • Search Google Scholar
    • Export Citation
  • Corringham, T. W., F. M. Ralph, A. Gershunov, D. R. Cayan, and C. A. Talbot, 2019: Atmospheric rivers drive flood damages in the western United States. Sci. Adv., 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631.

    • Search Google Scholar
    • Export Citation
  • Curry, C. L., S. U. Islam, F. W. Zwiers, and S. J. Déry, 2019: Atmospheric rivers increase future flood risk in western Canada’s largest Pacific river. Geophys. Res. Lett., 46, 16511661, https://doi.org/10.1029/2018GL080720.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Das, T., E. P. Maurer, D. W. Pierce, M. D. Dettinger, and D. R. Cayan, 2013: Increases in flood magnitudes in California under warming climates. J. Hydrol., 501, 101110, https://doi.org/10.1016/j.jhydrol.2013.07.042.

    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. E. Waliser, B. Guan, F. M. Ralph, and F. Vitart, 2019a: Global evaluation of atmospheric river subseasonal prediction skill. Climate Dyn., 52, 30393060, https://doi.org/10.1007/s00382-018-4309-x.

    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., and Coauthors, 2019b: Experimental Subseasonal-to-Seasonal (S2S) forecasting of atmospheric rivers over the western United States. J. Geophys. Res. Atmos., 124, 11 24211 265, https://doi.org/10.1029/2019JD031200.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Fish, M. A., A. M. Wilson, and F. M. Ralph, 2019: Atmospheric river families: Definition and associated synoptic conditions. J. Hydrometeor., 20, 20912108, https://doi.org/10.1175/JHM-D-18-0217.1.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Search Google Scholar
    • Export Citation
  • Graham, R. J., A. D. L. Evans, K. R. Mylne, M. S. J. Harrison, and K. B. Robertson, 2010: An assessment of seasonal predictability using atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 126, 22112240, https://doi.org/10.1002/qj.49712656712.

    • Search Google Scholar
    • Export Citation
  • Griffin, K. S., and J. E. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. J. Climate, 30, 3954, https://doi.org/10.1175/JCLI-D-15-0833.1.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., J.-K. E. Schemm, W. Shi, and A. Leetmaa, 2000: Extreme precipitation events in the western United States related to tropical forcing. J. Climate, 13, 793820, https://doi.org/10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jaffe, S. C., J. E. Martin, D. J. Vimont, and D. J. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. J. Climate, 24, 28462860, https://doi.org/10.1175/2010JCLI3995.1.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and M. Leutbecher, 2008: Scale-dependent verification of ensemble forecasts. Quart. J. Roy. Meteor. Soc., 134, 973984, https://doi.org/10.1002/qj.255.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., and F. W. Zwiers, 2003: On the ROC score of probability forecasts. J. Climate, 16, 41454150, https://doi.org/10.1175/1520-0442(2003)016<4145:OTRSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and M. J. Suarez, 1995: Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100, 13 77513 790, https://doi.org/10.1029/95JD00176.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., P. Peng, and M. Chen, 2014: Is there a relationship between potential and actual skill? Mon. Wea. Rev., 142, 22202227, https://doi.org/10.1175/MWR-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. Pappenberger, and E. Zsoter, 2014: Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun., 5, 5382, https://doi.org/10.1038/ncomms6382.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., D. E. Waliser, F. M. Ralph, and M. D. Dettinger, 2016: Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett., 43, 22752282, https://doi.org/10.1002/2016GL067765.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321333, https://doi.org/10.3402/tellusa.v17i3.9076.

    • Search Google Scholar
    • Export Citation
  • Luo, L., and E. F. Wood, 2006: Assessing the idealized predictability of precipitation and temperature in the NCEP climate forecast system. Geophys. Res. Lett., 33, L04708, https://doi.org/10.1029/2005GL025292.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., and P. H. Gleick, 2015: Climate change and California drought in the 21st century. Proc. Natl. Acad. Sci. USA, 112, 38583859, https://doi.org/10.1073/pnas.1503667112.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and N. E. Graham, 2002: Areas beneath the Relative Operating Characteristics (ROC) and Relative Operating Levels (ROL) curves: Statistical significance and interpretation. Quart. J. Roy. Meteor. Soc., 128, 21452166, https://doi.org/10.1256/003590002320603584.

    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., A. Gershunov, A. Weyant, M. A. Fish, T. Shulgina, and F. M. Ralph, 2022: Atmospheric river precipitation enhanced by climate change: A case study of the storm that contributed to California’s Oroville Dam crisis. Earth’s Future, 10, e2021EF002537, https://doi.org/10.1029/2021EF002537.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., A. B. White, and D. J. Gottas, 2021: Characteristics of long-duration heavy precipitation events along the West Coast of the United States. Mon. Wea. Rev., 149, 22552277, https://doi.org/10.1175/MWR-D-20-0336.1.

    • Search Google Scholar
    • Export Citation
  • Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 48854903, https://doi.org/10.1175/JCLI-D-15-0655.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2006: Medium and extended range predictability and stability of the Pacific/North American mode. Quart. J. Roy. Meteor. Soc., 114, 691713, https://doi.org/10.1002/qj.49711448108.

    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and Coauthors, 2020: Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ., 1, 143157, https://doi.org/10.1038/s43017-020-0030-5.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Search Google Scholar
    • Export Citation
  • Philippon, N., F. J. Doblas-Reyes, and P. M. Ruti, 2010: Skill, reproducibility and potential predictability of the West African monsoon in coupled GCMs. Climate Dyn., 35, 5374, https://doi.org/10.1007/s00382-010-0856-5.

    • Search Google Scholar
    • Export Citation
  • Prince, H. D., P. B. Gibson, M. J. DeFlorio, T. W. Corringham, A. Cobb, B. Guan, F. M. Ralph, and D. E. Waliser, 2021: Genesis locations of the costliest atmospheric rivers impacting the western United States. Geophys. Res. Lett., 48, e2021GL093947, https://doi.org/10.1029/2021GL093947.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteor. Soc., 100, 269289, https://doi.org/10.1175/BAMS-D-18-0023.1.

    • Search Google Scholar
    • Export Citation
  • Ricciotti, J. A., and J. M. Cordeira, 2022: Summarizing relationships among landfalling atmospheric rivers, integrated water vapor transport, and California watershed precipitation 1982–2019. J. Hydrometeor., 23, 14391454, https://doi.org/10.1175/JHM-D-21-0119.1.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., A. Kumar, M. Peña, and F. Vitart, 2015: Improving and promoting subseasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 96, ES49ES53, https://doi.org/10.1175/BAMS-D-14-00139.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 24552474, https://doi.org/10.5194/gmd-11-2455-2018.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, https://doi.org/10.1007/s00382-010-0947-3.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D., and B. Guan, 2017: Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci., 10, 179183, https://doi.org/10.1038/ngeo2894.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2017: Potential applications of Subseasonal-to-Seasonal (S2S) predictions. Meteor. Appl., 24, 315325, https://doi.org/10.1002/met.1654.

    • Search Google Scholar
    • Export Citation
  • White, C. J., and Coauthors, 2022: Advances in the application and utility of subseasonal-to-seasonal predictions. Bull. Amer. Meteor. Soc., 103, E1448E1472, https://doi.org/10.1175/BAMS-D-20-0224.1.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, https://doi.org/10.1002/2015GL064924.

    • Search Google Scholar
    • Export Citation
  • Winters, A. C., 2021: Subseasonal prediction of the state and evolution of the North Pacific jet stream. J. Geophys. Res. Atmos., 126, e2021JD035094, https://doi.org/10.1029/2021JD035094.

    • Search Google Scholar
    • Export Citation
  • Winters, A. C., D. Keyser, and L. F. Bosart, 2019: The development of the North Pacific jet phase diagram as an objective tool to monitor the state and forecast skill of the upper-tropospheric flow pattern. Wea. Forecasting, 34, 199219, https://doi.org/10.1175/WAF-D-18-0106.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., F. M. Ralph, and M. Zheng, 2019: The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett., 46, 18141823, https://doi.org/10.1029/2018GL079071.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1535 1391 11
Full Text Views 422 363 169
PDF Downloads 298 225 33