Analysis of a Nonconvective Mesoscale Windstorm and Wildfire Outbreak in Kansas on 15 December 2021

Thomas J. Galarneau Jr. NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Thomas J. Galarneau Jr. in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2342-2594
and
Michelle R. Spencer Cooperative Institute for Severe and High-Impact Weather Research and Operations, The University of Oklahoma, Norman, Oklahoma
School of Meteorology, The University of Oklahoma, Norman, Oklahoma
NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Michelle R. Spencer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A rapidly deepening extratropical cyclone moved across the central Great Plains on 15 December 2021 and resulted in simultaneous extreme weather events. A derecho developed at the cold front and moved from the eastern half of Kansas to Wisconsin. Simultaneously, a nonconvective mesoscale windstorm occurred on the southwest side of the cyclone and moved from western to central Kansas and is the focus of this study. The windstorm downed power lines and triggered a wildfire outbreak covering over 160 000 ac (650 km2) resulting in two fatalities, several injuries, and the loss of hundreds of cattle. Surface wind gusts exceeded 50 kt (26 m s−1) over a large area in western Kansas with a peak gust of 87 kt (45 m s−1) observed at Russell, Kansas, on the southeast flank of the largest wildfire in the region. The extratropical cyclone resembled the Shapiro–Keyser conceptual model with the mesoscale windstorm focused near the cloud head and southern tip of the bent-back front southwest of the cyclone center. The near-surface wind speeds were highest where three airstreams—one along the bent-back front and the other two at higher altitudes to the west of the cyclone—descended and accelerated in a higher horizontal pressure gradient region near the tip of the bent-back front and cloud head. While the nonconvective mesoscale windstorm did not meet the exact definition of a sting jet, it exhibited many of the same characteristics and physical mechanisms that drive sting jets with oceanic Shapiro–Keyser cyclones.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas J. Galarneau, thomas.galarneau@noaa.gov

Abstract

A rapidly deepening extratropical cyclone moved across the central Great Plains on 15 December 2021 and resulted in simultaneous extreme weather events. A derecho developed at the cold front and moved from the eastern half of Kansas to Wisconsin. Simultaneously, a nonconvective mesoscale windstorm occurred on the southwest side of the cyclone and moved from western to central Kansas and is the focus of this study. The windstorm downed power lines and triggered a wildfire outbreak covering over 160 000 ac (650 km2) resulting in two fatalities, several injuries, and the loss of hundreds of cattle. Surface wind gusts exceeded 50 kt (26 m s−1) over a large area in western Kansas with a peak gust of 87 kt (45 m s−1) observed at Russell, Kansas, on the southeast flank of the largest wildfire in the region. The extratropical cyclone resembled the Shapiro–Keyser conceptual model with the mesoscale windstorm focused near the cloud head and southern tip of the bent-back front southwest of the cyclone center. The near-surface wind speeds were highest where three airstreams—one along the bent-back front and the other two at higher altitudes to the west of the cyclone—descended and accelerated in a higher horizontal pressure gradient region near the tip of the bent-back front and cloud head. While the nonconvective mesoscale windstorm did not meet the exact definition of a sting jet, it exhibited many of the same characteristics and physical mechanisms that drive sting jets with oceanic Shapiro–Keyser cyclones.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Thomas J. Galarneau, thomas.galarneau@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 0.2620 MB)
Save
  • Abatzoglou, J. T., and C. A. Kolden, 2013: Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire, 22, 10031020, https://doi.org/10.1071/WF13019.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, https://doi.org/10.1175/2007JAMC1689.1.

    • Search Google Scholar
    • Export Citation
  • Baker, L. H., S. L. Gray, and P. A. Clark, 2014: Idealised simulations of sting-jet cyclones. Quart. J. Roy. Meteor. Soc., 140, 96110, https://doi.org/10.1002/qj.2131.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1919: On the structure of moving cyclones. Mon. Wea. Rev., 47, 9599, https://doi.org/10.1175/1520-0493(1919)47%3C95:OTSOMC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., and H. S. Solberg, 1921: Meteorological conditions for the formation of rain. Geofys. Publ., 2, 160.

  • Bjerknes, J., and H. S. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 318.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 12451273, https://doi.org/10.1175/MWR-D-16-0230.1.

    • Search Google Scholar
    • Export Citation
  • Brâncuş, M., D. M. Schultz, B. Antonescu, C. Dearden, and S. Ştefan, 2019: Origin of strong winds in an explosive Mediterranean extratropical cyclone. Mon. Wea. Rev., 147, 36493671, https://doi.org/10.1175/MWR-D-19-0009.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, https://doi.org/10.1256/qj.02.143.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., D. J. Smart, M. R. Clark, and A. J. Illingworth, 2015: The role of evaporating showers in the transfer of sting-jet momentum to the surface. Quart. J. Roy. Meteor. Soc., 141, 29562971, https://doi.org/10.1002/qj.2581.

    • Search Google Scholar
    • Export Citation
  • Burroughs, L. D., 1987: Development of forecast guidance for Santa Ana conditions. Natl. Wea. Dig., 12, 411.

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., and S. L. Gray, 2018: Sting jets in extratropical cyclones: A review. Quart. J. Roy. Meteor. Soc., 144, 943969, https://doi.org/10.1002/qj.3267.

    • Search Google Scholar
    • Export Citation
  • Clark, P. A., K. A. Browning, and C. Wang, 2005: The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Quart. J. Roy. Meteor. Soc., 131, 22632292, https://doi.org/10.1256/qj.04.36.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., M. C. Coniglio, A. E. Cohen, and C. M. Mead, 2016: A proposed revision to the definition of “derecho”. Bull. Amer. Meteor. Soc., 97, 935949, https://doi.org/10.1175/BAMS-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
  • Donovan, V. M., C. L. Wonkka, and D. Twidwell, 2017: Surging wildfire activity in a grassland biome. Geophys. Res. Lett., 44, 59865993, https://doi.org/10.1002/2017GL072901.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, W. Blumen, Ed., Amer. Meteor. Soc., 59–81.

  • Earl, N., S. Dorling, M. Starks, and R. Finch, 2017: Subsynoptic-scale features associated with extreme surface gusts in UK extratropical cyclone events. Geophys. Res. Lett., 44, 39323940, https://doi.org/10.1002/2017GL073124.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, https://doi.org/10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and M. L. Weisman, 2020: A comparison of the vorticity dynamics governing the oceanic bomb cyclone of 4–5 January 1989 and the super derecho of 8 May 2009. J. Atmos. Sci., 77, 30813103, https://doi.org/10.1175/JAS-D-20-0179.1.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Jr., and X. Zeng, 2020: The Hurricane Harvey (2017) Texas rainstorm: Synoptic analysis and sensitivity to soil moisture. Mon. Wea. Rev., 148, 24792502, https://doi.org/10.1175/MWR-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., O. Martínez-Alvarado, L. H. Baker, and P. A. Clark, 2011: Conditional symmetric instability in sting-jet storms. Quart. J. Roy. Meteor. Soc., 137, 14821500, https://doi.org/10.1002/qj.859.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., A. Volonte, O. Martinez-Alvarado, and B. J. Harvey, 2024: A global climatology of sting-jet extratropical cyclones. Wea. Climate Dyn., 5, 15231544, https://doi.org/10.5194/wcd-5-1523-2024.

    • Search Google Scholar
    • Export Citation
  • Grønås, S., 1995: The seclusion intensification of the New Year’s day storm 1992. Tellus, 47A, 733746, https://doi.org/10.3402/tellusa.v47i5.11571.

    • Search Google Scholar
    • Export Citation
  • Hart, N. C. G., S. L. Gray, and P. A. Clark, 2017: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Climate, 30, 54555471, https://doi.org/10.1175/JCLI-D-16-0791.1.

    • Search Google Scholar
    • Export Citation
  • Hatzaki, M., and Coauthors, 2023: MedCyclones: Working together toward understanding Mediterranean cyclones. Bull. Amer. Meteor. Soc., 104, E480E487, https://doi.org/10.1175/BAMS-D-22-0280.1.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and Coauthors, 2024: Warn-on-Forecast System: From vision to reality. Wea. Forecasting, 39, 7595, https://doi.org/10.1175/WAF-D-23-0147.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., and U. Neu, 2015: Cyclones, windstorms and the IMILAST project. Tellus, 67A, 27128, https://doi.org/10.3402/tellusa.v67.27128.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 3249, https://doi.org/10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kansas Forest Service, 2021: Kansas forest health highlights 2021. Kansas Forest Service, 19 pp., https://www.kansasforests.org/forest_health/health_docs/FHH%202021.pdf.

  • Kelley, J. D., D. M. Schultz, R. S. Schumacher, and D. R. Durran, 2019: Can Mountain waves contribute to damaging winds far away from the lee slope? Wea. Forecasting, 34, 20452065, https://doi.org/10.1175/WAF-D-18-0207.1.

    • Search Google Scholar
    • Export Citation
  • Kenyon, J. S., D. Keyser, L. F. Bosart, and M. S. Evans, 2020: The motion of mesoscale snowbands in northeast U.S. winter storms. Wea. Forecasting, 35, 83105, https://doi.org/10.1175/WAF-D-19-0038.1.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., M. J. Reeder, and R. J. Reed, 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762781, https://doi.org/10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2008: Extratropical transition of tropical cyclones in the western North Pacific: Their frontal evolution. Mon. Wea. Rev., 136, 20662090, https://doi.org/10.1175/2007MWR1958.1.

    • Search Google Scholar
    • Export Citation
  • Kite, A., 2021: ‘Ball of rolling fire and smoke’: Wildfires rip through north-central Kansas. Kansas Reflector, accessed 10 June 2024, https://kansasreflector.com/2021/12/20/ball-of-rolling-fire-and-smoke-wildfires-rip-through-north-central-kansas/.

  • Knox, J. A., J. D. Frye, J. D. Durkee, and C. M. Fuhrmann, 2011: Non-convective high winds associated with extratropical cyclones. Geogr. Compass, 5, 6389, https://doi.org/10.1111/j.1749-8198.2010.00395.x.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., and Coauthors, 2014: Southern Great Plains wildfire outbreaks. Electron. J. Severe Storms Meteor., 9, https://ejssm.org/archives/wp-content/uploads/2021/09/vol9-2.pdf.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., B. R. Bowers, G. P. Murdoch, B. R. Smith, and C. M. Gitro, 2017: Analyses of fire-effective low-level thermal ridges on the Southern Great Plains. J. Oper. Meteor., 5, 146160, https://doi.org/10.15191/nwajom.2017.0512.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., D. A. Speheger, M. A. Day, G. P. Murdoch, B. R. Smith, N. J. Nauslar, and D. C. Daily, 2019: Megafires on the Southern Great Plains. J. Oper. Meteor., 7, 164179, https://doi.org/10.15191/nwajom.2019.0712.

    • Search Google Scholar
    • Export Citation
  • Lindley, T. T., A. B. Zwink, R. R. Barnes, G. P. Murdoch, B. C. Ancell, P. C. Burke, and P. S. Skinner, 2023: Preliminary use of convection-allowing models in fire weather. J. Oper. Meteor., 11, 7281, https://doi.org/10.15191/nwajom.2023.1106.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., S. L. Gray, J. L. Catto, and P. A. Clark, 2012: Sting jets in intense winter North-Atlantic windstorms. Environ. Res. Lett., 7, 024014, https://doi.org/10.1088/1748-9326/7/2/024014.

    • Search Google Scholar
    • Export Citation
  • Mass, C., and B. Dotson, 2010: Major extratropical cyclones of the Northwest United States: Historical review, climatology, and synoptic environment. Mon. Wea. Rev., 138, 24992527, https://doi.org/10.1175/2010MWR3213.1.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, https://doi.org/10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2024: NOAA/NCEI storm events database version 3.1. NOAA, accessed 3 September 2022, https://www.ncdc.noaa.gov/stormevents/.

  • NWCG, 2022: Fire Behavior Field Reference Guide, PMS 437. National Wildfire Coordinating Group, accessed 16 March 2023, https://www.nwcg.gov/publications/pms437/fire-behavior-field-reference-guide-pms-437.

  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11, 127.

  • Pyne, S. J., 2017: The Great Plains: A Fire Survey. The University of Arizona Press, 217 pp.

  • Reed, R. J., Y.-H. Kuo, and S. Low-Nam, 1994: An adiabatic simulation of the ERICA IOP 4 storm: An example of quasi-ideal frontal cyclone development. Mon. Wea. Rev., 122, 26882708, https://doi.org/10.1175/1520-0493(1994)122<2688:AASOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and L. F. Bosart, 2014: A case study of the interaction of a mesoscale gravity wave with a mesoscale convective system. Mon. Wea. Rev., 142, 14031429, https://doi.org/10.1175/MWR-D-13-00274.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb”. Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and J. M. Sienkiewicz, 2013: Using frontogenesis to identify sting jets in extratropical cyclones. Wea. Forecasting, 28, 603613, https://doi.org/10.1175/WAF-D-12-00126.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and K. A. Browning, 2017: What is a sting jet? Weather, 72, 6366, https://doi.org/10.1002/wea.2795.

  • Schultz, D. M., and D. Keyser, 2021: Antecedents for the Shapiro-Keyser cyclone model in the Bergen school literature. Bull. Amer. Meteor. Soc., 102, E383E398, https://doi.org/10.1175/BAMS-D-20-0078.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791, https://doi.org/10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Slater, T. P., D. M. Schultz, and G. Vaughan, 2015: Acceleration of near-surface strong winds in a dry, idealised extratropical cyclone. Quart. J. Roy. Meteor. Soc., 141, 10041016, https://doi.org/10.1002/qj.2417.

    • Search Google Scholar
    • Export Citation
  • Slater, T. P., D. M. Schultz, and G. Vaughan, 2017: Near-surface strong winds in a marine extratropical cyclone: Acceleration of the winds and the importance of surface fluxes. Quart. J. Roy. Meteor. Soc., 143, 321332, https://doi.org/10.1002/qj.2924.

    • Search Google Scholar
    • Export Citation
  • Smart, D. J., and K. A. Browning, 2014: Attribution of strong winds to a cold conveyor belt and sting jet. Quart. J. Roy. Meteor. Soc., 140, 595610, https://doi.org/10.1002/qj.2162.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and J. S. Kenyon, 2016: Modifications to the Rapid Update Cycle Land Surface Model (RUC LSM) available in the Weather Research and Forecasting (WRF) Model. Mon. Wea. Rev., 144, 18511865, https://doi.org/10.1175/MWR-D-15-0198.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. M., B. J. Hatchett, and M. L. Kaplan, 2018: Characteristics of sundowner winds near Santa Barbara, California, from a dynamically downscaled climatology: Environment and effects near the surface. J. Appl. Meteor. Climatol., 57, 589606, https://doi.org/10.1175/JAMC-D-17-0162.1.

    • Search Google Scholar
    • Export Citation
  • Sommers, W. T., 1978: LFM forecast variables related to Santa Ana wind occurrences. Mon. Wea. Rev., 106, 13071316, https://doi.org/10.1175/1520-0493(1978)106<1307:LFVRTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • State of Kansas, 2023: Governor’s Wildfire Task Force. Final Rep., 42 pp., https://www.kansasforests.org/fire_management/Wildfire-Task-Force-Report_FINAL.pdf.

  • Stuivenvolt-Allen, J., and S.-Y. Wang, 2023: North American fire weather catalyzed by the extratropical transition of tropical cyclones. Climate Dyn., 61, 6578, https://doi.org/10.1007/s00382-022-06561-1.

    • Search Google Scholar
    • Export Citation
  • Stuivenvolt-Allen, J., S.-Y. Wang, M. D. LaPlante, and J.-H. Yoon, 2021: Three western Pacific typhoons strengthened fire weather in the recent Northwest U.S. conflagration. Geophys. Res. Lett., 48, e2020GL091430, https://doi.org/10.1029/2020GL091430.

    • Search Google Scholar
    • Export Citation
  • Takayabu, I., 1986: Roles of the horizontal advection on the formation of surface fronts and on the occlusion of a cyclone developing in the baroclinic westerly jet. J. Meteor. Soc. Japan, 64, 329345, https://doi.org/10.2151/jmsj1965.64.3_329.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., N. T. Atkins, and C. Liu, 1995: Observations of the early evolution of an explosive oceanic cyclone during ERICA IOP 5. Part II: Airborne Doppler analysis of the mesoscale circulation and frontal structure. Mon. Wea. Rev., 123, 13111327, https://doi.org/10.1175/1520-0493(1995)123<1311:OOTEEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an Enhanced Fujita scale (EF-scale). Texas Tech University Wind Science and Engineering Center Rep., 111 pp., https://www.depts.ttu.edu/nwi/Pubs/FScale/EFScale.pdf.

  • Zscheischler, J., and Coauthors, 2020: A typology of compound weather and climate events. Nat. Rev. Earth Environ., 1, 333347, https://doi.org/10.1038/s43017-020-0060-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1077 1077 402
PDF Downloads 410 410 75