Abstract
This study examines the dependence of tropical cyclone (TC) intensity forecast errors on track forecast errors in the Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TC) model. Using real-time forecasts and retrospective experiments during 2015-2018, verification of TC intensity errors conditioned on different 5-day track error thresholds shows that reducing the 5-day track errors by 50-70% can help reduce the absolute intensity errors by 18-20% in the 2018 version of the COAMPS-TC model. Such impacts of track errors on the TC intensity errors are most persistent at 4-5 day lead times in all three major ocean basins, indicating a significant control of global models on the forecast skill of the COAMPS-TC model. It is of interest to find, however, that lowering the 5-day track errors below 80 nm does not reduce TC absolute intensity errors further. Instead, the 4-5 day intensity errors appear to be saturated at around 10-12 kt for cases with small track errors, thus suggesting the existence of some inherent intensity errors in regional models.
Additional idealized simulations under a perfect model scenario reveal that the COAMPS-TC model possesses an intrinsic intensity variation at the TC mature stage in the range of 4-5 kt, regardless of the large-scale environment. Such intrinsic intensity variability in the COAMPS-TC model highlights the importance of potential chaotic TC dynamics, rather than model deficiencies, in determining TC intensity errors at 4-5 day lead times. These results indicate a fundamental limit in the improvement of TC intensity forecasts by numerical models that one should consider in future model development and evaluation.