Relationship between prediction skill of surface winds in average of weeks 1 to 4 and interannual variability over the Western Pacific and Indian Ocean

View More View Less
  • 1 Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia, USA
  • 2 Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia, USA
© Get Permissions
Restricted access

Abstract

This study examines the possible relationship between predictions of weekly and biweekly averages of 10m winds at 3 weeks lead-time and interannual variability over Western Pacific and Indian Ocean (WP-IO) using Climate Forecast System version 2 (CFSv2) reforecasts for period 1979-2008. There is large temporal correlation between forecasts and reanalyses for zonal, meridional and total wind magnitudes at 10m over most of WP-IO for average of weeks 1 and 2 (W1 and W2) in reforecasts initialized in January (JIR) and May (MIR). The model has some correlations that exceed 95% confidence in some portions of WP-IO in week 3 (W3) but no skill in week 4 (W4) over most of the region. Model depicts prediction skill in 14-day average of weeks 3-4 (W3-4) over portions of WP-IO, similar to level of skill in W3. The amplitude of interannual variability (IAV) for 10m-winds in W1 of JIR and MIR is close to that in reanalyses. As lead-time increases, amplitude of IAV of 10m-winds gradually decreases over WP-IO in reforecasts; in contrast to behavior in reanalyses. The amplitude of IAV of predicted 10m-winds in W3-4 over WP-IO is equivalent to that in W3 and W4 in reforecasts. In contrast, the amplitude of IAV in W3-4 in January and May of reanalysis is much smaller than IAV of W3 and W4. Therefore, one of the possible causes for prediction skill in W3-4 over sub-regions of WP-IO is due to reduction of IAV bias in W3-4 in comparison to IAV bias in W3 and W4.

Corresponding author: Ravi P. Shukla, PhD, Center for Ocean-Land-Atmosphere Studies, George Mason University, 270 Research Hall, Mail Stop 6C5, 4400 University Drive, Fairfax, VA 22030 USA. E-mail: rshukla2@gmu.edu

Abstract

This study examines the possible relationship between predictions of weekly and biweekly averages of 10m winds at 3 weeks lead-time and interannual variability over Western Pacific and Indian Ocean (WP-IO) using Climate Forecast System version 2 (CFSv2) reforecasts for period 1979-2008. There is large temporal correlation between forecasts and reanalyses for zonal, meridional and total wind magnitudes at 10m over most of WP-IO for average of weeks 1 and 2 (W1 and W2) in reforecasts initialized in January (JIR) and May (MIR). The model has some correlations that exceed 95% confidence in some portions of WP-IO in week 3 (W3) but no skill in week 4 (W4) over most of the region. Model depicts prediction skill in 14-day average of weeks 3-4 (W3-4) over portions of WP-IO, similar to level of skill in W3. The amplitude of interannual variability (IAV) for 10m-winds in W1 of JIR and MIR is close to that in reanalyses. As lead-time increases, amplitude of IAV of 10m-winds gradually decreases over WP-IO in reforecasts; in contrast to behavior in reanalyses. The amplitude of IAV of predicted 10m-winds in W3-4 over WP-IO is equivalent to that in W3 and W4 in reforecasts. In contrast, the amplitude of IAV in W3-4 in January and May of reanalysis is much smaller than IAV of W3 and W4. Therefore, one of the possible causes for prediction skill in W3-4 over sub-regions of WP-IO is due to reduction of IAV bias in W3-4 in comparison to IAV bias in W3 and W4.

Corresponding author: Ravi P. Shukla, PhD, Center for Ocean-Land-Atmosphere Studies, George Mason University, 270 Research Hall, Mail Stop 6C5, 4400 University Drive, Fairfax, VA 22030 USA. E-mail: rshukla2@gmu.edu
Save