• Agee, E. M., and A. Hendricks, 2011: An assessment of the climatology of Florida hurricane-induced tornadoes (HITs): Technology versus meteorology. J. Climate, 24, 52185222, https://doi.org/10.1175/JCLI-D-11-00235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barbour, G. B., 1924: Waterspout and tornado within a typhoon. Mon. Wea. Rev., 52, 106108, https://doi.org/10.1175/1520-0493(1924)52<106b:WATWAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and et al. , 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S., and D. A. Zelinsky, 2018: National Hurricane Center tropical cyclone report: Hurricane Harvey (17 August–1 September 2017). NHC Tech. Rep. AL092017, 77 pp. https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

  • Blumberg, W. G., K. T. Halbert, T. A. Supinie, P. T. Marsh, R. L. Thompson, and J. A. Hart, 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., and J. Correia, 2018: Long-term performance metrics for National Weather Service tornado warnings. Wea. Forecasting, 33, 15011511, https://doi.org/10.1175/WAF-D-18-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and S. Erickson, 2010: Tornadoes without NWS warning. Wea. Forecasting, 25, 159172, https://doi.org/10.1175/2009WAF2222270.1.

  • Chrisman, J., 2014: Multiple elevation scan option for SAILS (MESO-SAILS). NOAA, 27 pp. https://www.roc.noaa.gov/wsr88d/PublicDocs/NewTechnology/MESO-SAILS_Description_Briefing_Jan_2014.pdf.

  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, and D. T. Lindsey, 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, https://doi.org/10.1175/WAF-D-13-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowe, C. C., W. A. Petersen, L. D. Carey, and D. J. Cecil, 2010: A dual-polarization investigation of tornado-warned cells associated with Hurricane Rita (2005). Electron. J. Oper. Meteor., 2010-EJ4, http://nwafiles.nwas.org/ej/pdf/2010-EJ4.pdf.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., 2010: Tropical cyclone tornado records for the modernized National Weather Service era. 25th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., P3.1, https://ams.confex.com/ams/25SLS/techprogram/paper_175269.htm.

  • Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteor., 7, https://ejssm.org/ojs/index.php/ejssm/article/viewArticle/97.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., and A. E. Pietrycha, 2006: Archetypes for surface baroclinic boundaries influencing tropical cyclone tornado occurrence. 23rd Conf. on Severe Local Storms, St. Louis MO, Amer. Meteor. Soc., P8.2, https://ams.confex.com/ams/23SLS/techprogram/paper_114992.htm.

  • Edwards, R., and J. C. Picca, 2016: Tornadic debris signatures in tropical cyclones. 28th Conf. on Severe Local Storms, Portland, OR, Amer. Meteor. Soc., 162, https://ams.confex.com/ams/28SLS/webprogram/Paper300633.html.

  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 15071519, https://doi.org/10.1175/WAF-D-11-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., C. J. Nowotarski, S. Overpeck, and G. R. Woodall, 2018: Tornadoes in Hurricane Harvey: Documentation and environmental analysis. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 52, https://ams.confex.com/ams/29SLS/webprogram/Paper348127.html.

  • Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 17931805, https://doi.org/10.1175/1520-0493(1983)111<1793:GOTAWH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., F. Zhang, and P. M. Markowski, 2011: Multiscale processes leading to supercells in the landfalling outer rainbands of Hurricane Katrina (2005). Wea. Forecasting, 26, 828847, https://doi.org/10.1175/WAF-D-10-05049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1988: Improving the watch/warning program through use of significant event data. Preprints, 15th Conf. on Severe Local Storms, Baltimore, MD, Amer. Meteor. Soc., 165–168.

  • Henderson, J., E. R. Nielsen, G. R. Herman, and R. S. Schumacher, 2020: A hazard multiple: Overlapping tornado and flash flood warnings in a National Weather Service forecast office in the southeastern United States. Wea. Forecasting, 35, 14591481, https://doi.org/10.1175/WAF-D-19-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, E. L., W. Malkin, and W. A. Schulz Jr, 1966: Tornadoes associated with cyclones of tropical origin—Practical features. J. Appl. Meteor., 5, 745763, https://doi.org/10.1175/1520-0450(1966)005<0745:TAWCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. Ryzhkov, 2009: Storm-relative helicity revealed from polarimetric radar measurements. J. Atmos. Sci., 66, 667685, https://doi.org/10.1175/2008JAS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and M. Umscheid, 2008: The Greensburg, KS tornadic storm: A storm of extremes. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 2.4, https://ams.confex.com/ams/24SLS/techprogram/paper_141811.htm.

  • Loeffler, S. D., M. R. Kumjian, M. Jerewicz, and M. M. French, 2020: Differentiating between tornadic and nontornadic supercells using polarimetric radar signatures of hydrometeor size sorting. Geophys. Res. Lett., 47, e2020GL088242, https://doi.org/10.1029/2020GL088242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacDonald, L., and C. J. Nowotarski, 2021: Verification of high-resolution models within landfalling tropical cyclones toward the improvement of rainband tornado forecasting. Fourth Special Symp. on Tropical Meteorology and Tropical Cyclones, Virtual, Amer. Meteor. Soc., P1059, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/381448.

  • Martinaitis, S. M., 2017: Radar observations of tornado-warned convection associated with tropical cyclones over Florida. Wea. Forecasting, 32, 165186, https://doi.org/10.1175/WAF-D-16-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., D. E. Buechler, S. J. Goodman, and M. Cammarta, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 17471763, https://doi.org/10.1175/1520-0493(2004)132<1747:DRALNO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2008: Extreme helicity and intense convective towers in Hurricane Bonnie. Mon. Wea. Rev., 136, 43554372, https://doi.org/10.1175/2008MWR2423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, T. W., N. J. Sokol, and R. A. Blume, 2017: Spatial distributions of tropical cyclone tornadoes by intensity and size characteristics. Atmosphere, 8, 160, https://doi.org/10.3390/atmos8090160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and et al. , 2019: How much did it really rain during Harvey? 33rd Conf. on Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 2A.6, https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/354837.

  • Novlan, D. J., and W. M. Gray, 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476488, https://doi.org/10.1175/1520-0493(1974)102<0476:HST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., R. Cheatham, S. Overpeck, and R. Edwards, 2018: Comparison of tornadic and nontornadic convective cells in Hurricane Harvey. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 175, https://ams.confex.com/ams/29SLS/webprogram/Paper348418.html.

  • Overpeck, S., C. J. Nowotarski, and R. Edwards, 2019: Detection of tropical cyclone tornadoes from Hurricane Harvey. Nat. Wea. Assoc. Annual Meeting, Huntsville, AL, NWS.

  • Pearson, A. D., and A. F. Sadowski, 1965: Hurricane-induced tornadoes and their distribution. Mon. Wea. Rev., 93, 461464, https://doi.org/10.1175/1520-0493(1965)093<0461:HITATD>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, and D. S. Zrnic, 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570, https://doi.org/10.1175/JAM2235.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., R. Edwards, and M. Coniglio, 2020: A climatological analysis of ambient deep-tropospheric vertical wind shear impacts upon tornadoes in tropical cyclones. Wea. Forecasting, 35, 20332059, https://doi.org/10.1175/WAF-D-19-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D., and S. Sharp, 2007: Radar signatures of tropical cyclone tornadoes in central North Carolina. Wea. Forecasting, 22, 278286, https://doi.org/10.1175/WAF992.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, L. A., and D. J. Cecil, 2009: Tropical cyclone tornadoes, 1950–2007. Mon. Wea. Rev., 137, 34713484, https://doi.org/10.1175/2009MWR2896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, A. R. Dean, and P. T. Marsh, 2015: Diagnosing the conditional probability of tornado damage rating using environmental and radar attributes. Wea. Forecasting, 30, 914932, https://doi.org/10.1175/WAF-D-14-00122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. S., 1965: The hurricane-tornado. Mon. Wea. Rev., 93, 453459, https://doi.org/10.1175/1520-0493(1965)093<0453:THT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and K. L. Elmore, 2004: The use of radial velocity derivative to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P5.6, https://ams.confex.com/ams/11aram22sls/techprogram/paper_81827.htm.

  • Spotts, J. R., C. J. Nowotarski, S. Overpeck, B. Fillipiak, and R. Edwards, 2020: Analysis of tornadic and nontornadic convective cell environments during Hurricane Harvey. Tropical Meteorology and Tropical Cyclones Symp., Boston, MA, Amer. Meteor. Soc., 857, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/363902.

  • Spratt, S. M., D. W. Sharp, P. Welsh, A. C. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12, 479501, https://doi.org/10.1175/1520-0434(1997)012<0479:AWAOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and M. D. Vescio, 1998: The destruction potential index—A method for comparing tornado days. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 280–282.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verbout, S. M., D. M. Schultz, L. M. Leslie, H. E. Brooks, D. J. Karoly, and K. L. Elmore, 2007: Tornado outbreaks associated with landfalling hurricanes in the North Atlantic Basin: 1954-2004. Meteor. Atmos. Phys., 97, 255271, https://doi.org/10.1007/s00703-006-0256-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WDTD, 2018: Tropical cyclone tornadoes course. NOAA. Warning Decision Training Division, accessed 1 June 2020, https://training.weather.gov/wdtd/courses/TC-tor/.

  • Wurman, J., and K. Kosiba, 2018: The role of small-scale vortices in enhancing surface winds and damage in Hurricane Harvey (2017). Mon. Wea. Rev., 146, 713722, https://doi.org/10.1175/MWR-D-17-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 208 208 160
Full Text Views 90 90 59
PDF Downloads 110 110 72

Tornadoes in Hurricane Harvey

View More View Less
  • 1 a Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 2 b NWS Storm Prediction Center, Norman, Oklahoma
  • | 3 c NWS Forecast Office, Albuquerque, New Mexico
  • | 4 d NWS Forecast Office, Memphis, Tennessee
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical cyclone tornadoes pose a unique challenge to warning forecasters given their often marginal environments and radar attributes. In late August 2017 Hurricane Harvey made landfall on the Texas coast and produced 52 tornadoes over a record-breaking seven consecutive days. To improve warning efforts, this case study of Harvey’s tornadoes includes an event overview as well as a comparison of near-cell environments and radar attributes between tornadic and nontornadic warned cells. Our results suggest that significant differences existed in both the near-cell environments and radar attributes, particularly rotational velocity, between tornadic cells and false alarms. For many environmental variables and radar attributes, differences were enhanced when only tornadoes associated with a tornado debris signature were considered. Our results highlight the potential of improving warning skill further and reducing false alarms by increasing rotational velocity warning thresholds, refining the use of near-storm environment information, and focusing warning efforts on cells likely to produce the most impactful tornadoes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Nowotarski, cjnowotarski@tamu.edu

Abstract

Tropical cyclone tornadoes pose a unique challenge to warning forecasters given their often marginal environments and radar attributes. In late August 2017 Hurricane Harvey made landfall on the Texas coast and produced 52 tornadoes over a record-breaking seven consecutive days. To improve warning efforts, this case study of Harvey’s tornadoes includes an event overview as well as a comparison of near-cell environments and radar attributes between tornadic and nontornadic warned cells. Our results suggest that significant differences existed in both the near-cell environments and radar attributes, particularly rotational velocity, between tornadic cells and false alarms. For many environmental variables and radar attributes, differences were enhanced when only tornadoes associated with a tornado debris signature were considered. Our results highlight the potential of improving warning skill further and reducing false alarms by increasing rotational velocity warning thresholds, refining the use of near-storm environment information, and focusing warning efforts on cells likely to produce the most impactful tornadoes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christopher J. Nowotarski, cjnowotarski@tamu.edu
Save