The influence of WSR-88D intra-volume scanning strategies on thunderstorm observations and warnings in the dual-polarization radar era: 2011-2020

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado and NOAA/Global Systems Laboratory, Boulder, Colorado
  • | 2 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Weather Surveillance Radar - 1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to re-scan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar Volume Coverage Patterns (VCPs) and all available SAILS options are used during the issuance of 148,882 severe thunderstorm and 18,263 tornado warnings, and near 10,474 tornado, 58,934 hail, and 127,575 wind reports in the dual-polarization radar era.

A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. Recently, the number of mid-level radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the 0.5° elevation angle in over 99% of cases examined.

Corresponding author address: Darrel M. Kingfield, NOAA/Global Systems Laboratory, 325 Broadway, Boulder, Colorado, 80305. E-mail: darrel.kingfield@noaa.gov

Abstract

The Weather Surveillance Radar - 1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to re-scan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar Volume Coverage Patterns (VCPs) and all available SAILS options are used during the issuance of 148,882 severe thunderstorm and 18,263 tornado warnings, and near 10,474 tornado, 58,934 hail, and 127,575 wind reports in the dual-polarization radar era.

A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. Recently, the number of mid-level radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the 0.5° elevation angle in over 99% of cases examined.

Corresponding author address: Darrel M. Kingfield, NOAA/Global Systems Laboratory, 325 Broadway, Boulder, Colorado, 80305. E-mail: darrel.kingfield@noaa.gov
Save