The physical interpretation of simultaneous multiangle observations represents a relatively new approach to remote sensing of terrestrial geophysical and biophysical parameters. Multiangle measurements enable retrieval of physical scene characteristics, such as aerosol type, cloud morphology and height, and land cover (e.g., vegetation canopy type), providing improved albedo accuracies as well as compositional, morphological, and structural information that facilitates addressing many key climate, environmental, and ecological issues. While multiangle data from wide field-of-view scanners have traditionally been used to build up directional “signatures” of terrestrial scenes through multitemporal compositing, these approaches either treat the multiangle variation as a problem requiring correction or normalization or invoke statistical assumptions that may not apply to specific scenes. With the advent of a new generation of global imaging spectroradiometers capable of acquiring simultaneous visible/near-IR multiangle observations, namely, the Along-Track Scanning Radiometer-2, the Polarization and Directionality of the Earth's Reflectances instrument, and the Multiangle Imaging SpectroRadiometer, both qualitatively new approaches as well as quantitative improvements in accuracy are achievable that exploit the multiangle signals as unique and rich sources of diagnostic information. This paper discusses several applications of this technique to scientific problems in terrestrial atmospheric and surface geophysics and biophysics.

This content is only available as a PDF.


*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

+Stanford University, Stanford, California.

#The University of Arizona, Tucson, Arizona.

@Boston University, Boston, Massachusetts.

&University College London, London, United Kingdom.

**University of Colorado, Boulder, Colorado.

##Joint Research Centre, Ispra, Italy.