Large (10 000 to 50 000 MW) power parks are being studied as one means of satisfying the nation's demand for energy. The dissipation of waste energy from these installations may result in significant meteorological effects. It is shown that the rate of atmospheric dissipation of the waste energy from these power parks is approximately equal to the atmospheric dissipation of energy by geophysical phenomena such as thunderstorms, volcanoes, and large bushfires. Cumulus clouds and whirlwinds often result from these energy releases. There is a possibility that natural vorticity will be concentrated by large power parks. A theory of multiple plume rise is used to estimate the enhancement of plume rise from multiple cooling towers.

Calculations of plume rise, ground level fog intensity, and drift deposition due to emissions from cooling towers at a hypothetical 40 000 MW nuclear power park are made. The plume rise from 50 towers is estimated to be more than 110% of that from a single tower if the tower spacing is less than about 300 m. At locations within 100 km of the cooling towers, excess fog will occur about one or two percent of the time. The vapor plume will be appreciably longer than those from present installations; for instance it should be clearly visible from earth satellites most of the time. Since there are no power parks of this magnitude yet in existence, there are no measurements to test these calculations. The conclusions are highly tentative and indicate that much more research is required on this subject.

This content is only available as a PDF.