Severe downslope windstorms are an outstanding feature of the winter weather in Boulder, Colo., and property damage associated with these storms averages about $1 million each year. Recently, efforts to develop a numerical model capable of forecasting downslope windstorms have yielded encouraging results. The possibility that short-term forecasts of these storms might become available on an operational basis led to a study of the societal impact of improved windstorm forecasts in the Boulder area, and this paper describes the results of that study.

Surveys were conducted of selected samples of Boulder residents and businesses concerning the potential economic and social benefits and disbenefits of improvements in downslope windstorm forecasts. The survey questions concerned five basic topics: 1) perception of the windstorm hazard; 2) the desire for improved windstorm forecasts; 3) the use of windstorm forecasts; 4) the value of improved forecasts; and 5) possible forecast dissemination techniques. Personal interviews were conducted with local businesses and public service agencies to supplement and extend the results of the surveys.

All segments of the community were found to be concerned about the windstorms because of the possibility of serious injury and/or major property damage. The responses also revealed a strong desire for improved windstorm forecasts, although the level of desire was found to depend upon the accuracy of the forecasts. Moreover, significant increases in the use of a variety of protective actions would occur if accurate (i.e., 80% accurate) windstorm forecasts were available. The results of the surveys and interviews indicated that accurate forecasts could reduce residential property damage by approximately $200 000 annually, and the potential savings to local businesses were estimated to be an additional $150 000. These benefits appear to greatly exceed any incremental costs associated with formulating and disseminating the forecasts and any economic losses suffered by local businesses due to decreased windstorm damage. In addition, the residents expressed a willingness to support a local windstorm forecasting system if governmental funding was not available. Finally, while no completely effective procedure for alerting a significant fraction of the community to an approaching windstorm was identified, it was recognized that this problem is not unique to forecasts of downslope windstorms and requires further study.

This content is only available as a PDF.

Footnotes

1 Small Scale Analysis and Prediction Project.

2 Environmental and Societal Impacts Group.

3 The National Center for Atmospheric Research is sponsored by the National Science Foundation.