Field studies in support of the Winter Icing and Storms Project (WISP) were conducted in the Colorado Front Range area from 1 February to 31 March 1990 (WISP90) and from 15 January to 5 April 1991 (WISP91). The main goals of the project are to study the processes leading to the formation and depletion of supercooled liquid water in winter storms and to improve forecasts of aircraft icing. During the two field seasons, 2 research aircraft, 4 Doppler radars, 49 Mesonet stations, 7 CLASS sounding systems, 3 microwave radiometers, and a number of other facilities were deployed in the Front Range area. A comprehensive dataset was obtained on 8 anticyclonic storms, 16 cyclonic storms, and 9 frontal passages.

This paper describes the objectives of the experiment, the facilities employed, the goals and results of a forecasting exercise, and applied research aspects of WISP. Research highlights are presented for several studies under way to illustrate the types of analysis being pursued. The examples chosen include topics on anticyclonic upslope storms, heavy snowfall, large droplets, shallow cold fronts, ice crystal formation and evolution, and numerical model performance.

This content is only available as a PDF.

Footnotes

*National Center for Atmospheric Research, Boulder, Colorado. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

+Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming.

**Environmental Research Laboratory, NOAA, Boulder, Colorado.

++Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

***Center for Aerospace Sciences, University of North Dakota, Grand Forks, North Dakota.