The strong El Niño of 1997–98 provided a unique opportunity for National Weather Service, National Centers for Environmental Prediction, Climate Prediction Center (CPC) forecasters to apply several years of accumulated new knowledge of the U.S. impacts of El Niño to their long-lead seasonal forecasts with more clarity and confidence than ever previously. This paper examines the performance of CPC's official forecasts, and its individual component forecast tools, during this event. Heavy winter precipitation across California and the southern plains–Gulf coast region was accurately forecast with at least six months of lead time. Dryness was also correctly forecast in Montana and in the southwestern Ohio Valley. The warmth across the northern half of the country was correctly forecast, but extended farther south and east than predicted. As the winter approached, forecaster confidence in the forecast pattern increased, and the probability anomalies that were assigned reached unprecedented levels in the months immediately preceding the winter. Verification scores for winter 1997/98 forecasts set a new record at CPC for precipitation.

Forecasts for the autumn preceding the El Niño winter were less skillful than those of winter, but skill for temperature was still higher than the average expected for autumn. The precipitation forecasts for autumn showed little skill. Forecasts for the spring following the El Niño were poor, as an unexpected circulation pattern emerged, giving the southern and southeastern United States a significant drought. This pattern, which differed from the historical El Niño pattern for spring, may have been related to a large pool of anomalously warm water that remained in the far eastern tropical Pacific through summer 1998 while the waters in the central Pacific cooled as the El Niño was replaced by a La Niña by the first week of June.

It is suggested that in addition to the obvious effects of the 1997–98 El Niño on 3-month mean climate in the United States, the El Niño (indeed, any strong El Niño or La Niña) may have provided a positive influence on the skill of medium-range forecasts of 5-day mean climate anomalies. This would reflect first the connection between the mean seasonal conditions and the individual contributing synoptic events, but also the possibly unexpected effect of the tropical boundary forcing unique to a given synoptic event. Circumstantial evidence suggests that the skill of medium-range forecasts is increased during lead times (and averaging periods) long enough that the boundary conditions have a noticeable effect, but not so long that the skill associated with the initial conditions disappears. Firmer evidence of a beneficial influence of ENSO on subclimate-scale forecast skill is needed, as the higher skill may be associated just with the higher amplitude of the forecasts, regardless of the reason for that amplitude.

This content is only available as a PDF.