Abstract

Two widely accepted conceptual models of extratropical cyclone structure and evolution exist: the Norwegian and Shapiro–Keyser cyclone models. The Norwegian cyclone model was developed around 1920 by the Bergen School meteorologists. This model has come to feature an acute angle between the cold and warm fronts, with the reduction in the area of the warm sector during the evolution of the cyclone corresponding to the formation of an occluded front. The Shapiro–Keyser cyclone model was developed around 1990 and was motivated by the recognition of alternative frontal structures depicted in model simulations and observations of rapidly developing extratropical cyclones. This model features a right angle between the cold and warm fronts (T-bone), a weakening of the poleward portion of the cold front (frontal fracture), an extension of the warm or occluded front to the rear of and around the cyclone (bent-back front), and the wrapping around of the bent-back front to form a warm-core seclusion of post-frontal air. Although the Norwegian cyclone model preceded the Shapiro–Keyser cyclone model by 70 years, antecedents of features of the Shapiro–Keyser cyclone model were apparent in observations, analyses, and conceptual models presented by the Bergen School meteorologists, their adherents, and their progeny. These “lost” antecedents are collected here for the first time to show that the Bergen School meteorologists were aware of them, although not all of the antecedents survived until their reintroduction into the Shapiro–Keyser cyclone model in 1990. Thus, the Shapiro–Keyser cyclone model can be viewed as a synthesis of various elements of cyclone structure and evolution recognized by the Bergen School meteorologists.

This content is only available as a PDF.