Browse

You are looking at 101 - 110 of 793 items for :

  • Weather, Climate, and Society x
  • Refine by Access: All Content x
Clear All
Amber Silver
and
Sam Jackson

Abstract

In 2018, Hurricanes Florence and Michael affected the southeastern portion of the United States, with widespread impacts in Florida, North Carolina, South Carolina, Georgia, and Virginia. The two storms were markedly different in terms of their meteorological history: Hurricane Florence made landfall as a category-1 storm approximately 2 weeks after formation, whereas Hurricane Michael made landfall as an “unprecedented” category-5 storm just 3 days after formation. The stark meteorological differences provided the opportunity to explore whether and to what extent public attention is influenced by storm severity. This study utilized both direct (i.e., tweet volume and search volume) and indirect (i.e., number of newspaper articles) measures to explore public attention at different scales. Data showed that Hurricane Florence received more attention than Hurricane Michael, both regionally and nationally, across all three measures. The findings also underscore the importance of time for the process of attention building, especially at the national level. Taken together, the results suggest that storm severity, forecast lead time, previous meteorological history, and population density intersect with one another to influence public attention in complex ways. The paper concludes with some opportunities for research that may provide additional insights into the linkages between attention, perception, and decision-making.

Significance Statement

The purpose of this study was to better understand the factors that influence public attention to extreme weather. This is important because attention is often noted for its mediating effect on decision-making. We found that public attention was greater during Hurricane Florence, despite the fact that Hurricane Michael was an “unprecedented” category-5 storm. Taken together, this suggests that storm severity, forecast lead time, previous meteorological history, and population density intersect with one another to influence public attention in complex ways.

Free access
Jessica K. Witt
,
Zachary M. Labe
,
Amelia C. Warden
, and
Benjamin A. Clegg

Abstract

Hurricane forecasts are often communicated through visualizations depicting the possible future track of the storm. The cone of uncertainty (COU) is a commonly used visualization, but the graphic is prone to misinterpretation such as thinking only locations contained within the cone’s boundary are at risk. In this study, we investigated the utility of conveying hurricane forecast tracks using a set of animated icons, each representing an instance of a possible storm path. We refer to this new visualization as animated risk trajectories (ARTs). We measured nonexperts’ perception of risk when viewing simplified, hypothetical hurricane forecasts presented as ARTs or COUs. To measure perception of risk for each visualization type, we designed experiments to have participants make decisions to evacuate individual towns at varying distances from the most likely forecast path of a storm. The ARTs led to greater risk perception in areas that fell beyond the cone’s boundaries. Nonexperts’ interpretation of risk was impacted by the visual properties of the ARTs, such as the distribution of the icons, including their density, and whether the distribution was unimodal or bimodal. This supports the suggestion that ARTs can have value in communicating spatial–temporal uncertainty.

Significance Statement

Because of the inherent uncertainties in weather forecasts and emergency management planning, communicating hurricane risk to the public is a unique challenge for decision-makers. Our study investigated the effect of conveying uncertainty in hurricane forecast tracks using a distribution of animated icons [animated risk trajectories (ARTs)], which correspond to potential hurricane tracks that evolve over time. This visualization was compared with a simplified cone-of-uncertainty graphic, such as those used by the National Hurricane Center. We found that ARTs offered flexibility in conveying information about hurricane risk, such as the magnitude of the risk via the number of icons and the location of the risk via the distribution of icons.

Free access
Amy S. Goodin
,
Cynthia L. Rogers
, and
Angela Zhang

Abstract

This study investigates whether and how energy consumers respond to public appeals for voluntary conservation during an extended and extreme winter energy emergency. Public appeals are an increasingly important tool for managing demand when grid disruptions are anticipated, especially given the increase in severe-weather events. We add to the few studies on winter energy crises by investigating a case in which there were repeated public appeals during an extended event. Using a survey implemented via social media immediately after the February 2021 winter storm, we asked residents of Norman, Oklahoma, a series of questions about their responses to the public appeals distributed by the utility company, including whether they followed the actions suggested in the messages as well as where they got information and their level of concern about the storm impacts. We compare mean responses across a range of categorical answers using standard independent t tests, one-way ANOVA tests, and chi-squared tests. Among the 296 respondents, there was a high degree of reported compliance, including setting the thermostat to 68°F (20°C) or lower (72%), avoiding using major appliances (86%), and turning off nonessential appliances, lights, and equipment (89%). Our findings suggest a high degree of willingness to voluntarily reduce energy consumption during an energy emergency. This is encouraging for energy managers: public appeals can be disseminated via social media at a low cost and in real time during an extended emergency event.

Significance Statement

The purpose of this study is to better understand whether and how energy consumers respond to public appeals for voluntary conservation during a winter energy emergency event. This is important because voluntary conservation can help utility managers minimize grid disruptions, particularly if consumers respond to evolving conditions. Our survey results suggest that individuals are willing to voluntarily conserve energy and follow conservation recommendations provided by utility managers during a severe winter event.

Free access
E. Baulenas
,
D. Bojovic
,
D. Urquiza
,
M. Terrado
,
S. Pickard
,
N. González
, and
A. L. St. Clair

Abstract

Climate services are high on the international agenda for their potential to help combat the effects of climate change. However, climate science is rarely directly incorporated into the decision-making processes of societal actors, due to what has been identified as the usability gap. This gap is partially due to a failure to timely and meaningfully engage users in the production of climate services, as well as misperceptions as to which users can best benefit from climate service uptake. In this article, we propose user selection and engagement guidelines that integrate important values from participatory science such as those of legitimacy, representativity, and agency. The guidelines consist of 5 + 1 steps: defining why, where, whom, which attributes, and which intensity and how to select and engage with stakeholders. While these steps may be initially implemented by an ideally interdisciplinary team of scientists and service designers, the final step consists of an iterative process by which each decision is agreed on together with the identified users and stakeholders under a coproduction approach. We believe this systematic user selection and engagement practice is key to support the design of climate services aligned to the actual needs of a wide and inclusive range of empowered societal agents.

Significance Statement

A review of the climate science and services literature and related research projects reveals that, despite the insistence to include users in all stages of the research process, users are often involved only sporadically and inconsistently and when there is little room to change the climate service suitable for decision-making. Here, we argue that a reason for this is the lack of user selection and engagement guidelines. Failure to implement a research design strategy for these decisions can lead to a lack of usability and applicability of the produced climate-related services, as well as hampering their long-term uptake. These guidelines can thus support the development of usable, coproduced, actionable climate science.

Open access
Jeffrey S. Jenkins
,
John T. Abatzoglou
, and
Brian A. Peterson

Abstract

Wilderness visitation, particularly overnight use, is reactive to climate variability because backpackers face greater exposure to and dependence on environmental conditions. This study examines the effect that spring snowpack had on the timing and volume of permits issued for overnight use of the Yosemite Wilderness during peak and shoulder-season months (April–October) from 2002 to 2019. We categorize 1 April snowpack at Tuolumne Meadows into snow drought (<75%), high snowpack (>125%), and near-average snowpack (75%–125%). Results confirm wilderness-wide differences between snowpack categories, including change in spring overnight visitors (April–June: +20% snow drought and −28% high snowpack). Our findings confirm that snow drought allows for more access to high-elevation trailheads when seasonal roads are open earlier in spring (May–June: +74% Tioga Road and +81% Tuolumne Meadows). Mid- to high-elevation trailheads experience a sustained increase in use during high-snowpack years (June–October: +12% Yosemite Valley and Big Oak Flat; +15% Glacier Point Road and Wawona; +32% Hetch Hetchy) because a narrower seasonal access window leads to filled permit quotas in the high country and displaces use to lower-elevation trailheads. These findings have implications for wilderness stewards, including biophysical and experiential impacts on wilderness character from earlier and longer seasons, especially at higher elevation and in fragile alpine and subalpine areas, as snow drought in mountain-protected areas becomes more common. Recommendations to address greater early-season use and its attendant impacts include adaptively managing permits for different types of snowpack years, including potential changes in the number, timing, and destination of select trailhead quotas.

Open access
Carlo Aall
,
Christiane Meyer-Habighorst
,
Irmelin Gram-Hanssen
,
Mari Hanssen Korsbrekke
, and
Grete Hovelsrud

Abstract

Sustainable development is a challenging field of research, colored by the paradoxes of modernity and development, and the trade-offs involved in balancing the “sustainable” and “development” sides of the various sustainable development goals. We must take these overarching challenges into account when entering a more specific discussion of what a concept of sustainable climate change adaptation may entail. This article reviews the history of this concept, including insights provided by the recent publications composing a special collection of Weather, Climate, and Society on the topic of sustainable climate change adaptation. This collection reflects on why and how the term sustainable development should be included in our understandings of and efforts toward climate change adaptation and proposes a preliminary framework for distinguishing between conventional and sustainable adaptation.

Significance Statement

This article reviews the history of the term “sustainable climate change adaptation” and reflects on the relationship between sustainable development and climate change adaptation efforts. It ends by proposing a framework for distinguishing between conventional and sustainable adaptation.

Open access
Lauren Prox

Abstract

Spanning 464.24 km2, Pokhara Metropolitan City is Nepal’s largest city by area. With over 400 000 residents, it is also Nepal’s second most populous city. This research investigated a biometeorological system present within Pokhara Metropolitan City concerning air pollution, meteorological conditions, and health. Different aspects of this system are more or less influential in various regions of the city, and understanding these relationships can assist with future health interventions for limiting exposure to pollutants. This research was completed using datasets published in government records and scientific literature, showcasing what can be accomplished with open-source data. Key findings were a positive correlation between air pollution levels and chronic obstructive pulmonary disease (COPD) hospital admissions to Pokhara’s Western Regional Hospital and a negative correlation between meteorological measurements and hospital admissions. These findings aligned with the general body of literature on risk factors for COPD hospitalizations. Multivariate regressions yielded better predictions for hospital admissions using both mean low and high temperatures as opposed to using one temperature variable, which implied both daily low and high temperatures are related to hospital admissions. Results also revealed air pollution levels for pollutants ≤ 10 and > 2.5 μm were better predictors of hospital admissions than air pollutants sized 2.5 μm and below. Findings prompted questions about the relationships between different pollutant sizes and their correlations to COPD hospitalizations. Findings also yielded questions about health interventions and Pokhara’s built environment, which may be investigated in future research.

Open access
Haven J. Cashwell
,
Karen S. McNeal
,
Kathie Dello
,
Ryan Boyles
, and
Corey Davis

Abstract

Species status assessments (SSAs) are required for endangered species by the U.S. Fish and Wildlife Service and focus on the resiliency, redundancy, and representation of endangered species. SSAs must include climate information, because climate is a factor that will impact species in the future. To aid in the inclusion of climate information, a decision support system (DSS) entitled Climate Analysis and Visualization for the Assessment of Species Status (CAnVAS) was developed by the State Climate Office of North Carolina using a coproduction approach. In this study, users viewed a mock-up version of the CAnVAS interface displaying a sample layout of future projections for three key climate variables (average precipitation, average maximum temperature, and occurrence of maximum temperature) at a location of interest. This assessment of the pilot version of the CAnVAS DSS was the first step in refining CAnVAS for species-manager use. This research analyzed the differences in usability between two pilot versions of the CAnVAS DSS through eye tracking and subsequent interviews with novice users. The two pilot versions of CAnVAS differed in the way data were displayed on graphs and the color ramps used on regional maps. We found that graphically displaying temporal climate information through box-and-whisker plots and spatially through a sequential color ramp from white to purple were more effective than alternative displays at communicating climate information on endangered species. The results of this research will be used to further develop the CAnVAS DSS tool for future implementation.

Significance Statement

A decision support system was developed for U.S. Fish and Wildlife Service biologists to incorporate more climate information in species status assessments for endangered species. This tool was tested through eye tracking and interviews with a novice undergraduate student sample to best refine the tool for stakeholder use. This work was able to discover that graphically displaying data in box-and-whisker format and spatially displaying data with a sequential color scheme of white to purple was best for usability purposes. The authors provide these recommendations for those who are producing usable products.

Open access
Laura Fischer
,
David Huntsman
,
Ginger Orton
, and
Jeannette Sutton

Abstract

A long-term goal for warning-message designers is to determine the most effective type of message that can instruct individuals to act quickly and prevent loss of life and/or injury when faced with an imminent threat. One likely way to increase an individual’s behavioral intent to act when they are faced with risk information is to provide protective action information or guidance. This study investigated participant perceptions (understanding, believing, personalizing, deciding, milling, self-efficacy, and response efficacy) in response to the National Weather Service’s experimental product Twitter messages for three hazard types (tornado, snow squall, and dust storm), with each message varying by inclusion and presentation of protective action information placed in the tweet text and the visual graphic. We also examine the role of prior hazard warning experience on message perception outcomes. To examine the effects, the experiment used a between-subjects design in which participants were randomly assigned to one hazard type and received one of four warning messages. Participants then took a post-test measuring message perceptions, efficacy levels, prior hazard warning experience, and demographics. The results showed that, for each hazard and prior hazard experience level, messages with protective action guidance in both the text and graphic increase their understanding, belief, ability to decide, self-efficacy, and response efficacy. These results reinforce the idea that well-designed messages that include protective action guidance work well regardless of hazard type or hazard warning experience.

Significance Statement

Preventing injury and/or loss of life during a hazardous event is a prime concern for disaster communicators. The study provides insights to practitioners on how to effectively communicate protective actions to audiences with varying familiarity with the hazard through Twitter posts. We experimented with tweet message design and content for three hazards: tornado, snow squall, and dust storm, to find that posts that include protective action guidance in both the text and image increase participant perceptions that they could perform the suggested protective actions, regardless of hazard type or hazard warning experience. Given our findings, practitioners should consider including protective action guidance in message text and graphic to warn members of the public with varied prior warning experience.

Free access
Bo Jiang
and
Gary LaFree

Abstract

Contemporary social science has produced little research on connections between climate change and crime. Nonetheless, much prior research suggests that economic insecurity may affect individual calculations of the cost and benefit of engaging in criminal behavior, and climate change is likely to have important economic consequences for professions like fishing that depend directly on the environment. In this paper, we test the possibility that climate change affects participation in maritime piracy, depending on the specific ways that it impacts regional fish production. Our analysis is based on piracy in East Africa and the South China Sea. These two regions are strategic in that both areas have experienced a large amount of piracy; however, rising sea temperatures have been associated with declines in fish production in East Africa but increases in the South China Sea. We treat sea surface temperature as an instrument for fish output and find that in East Africa higher sea surface temperature is associated with declining fish production, which in turn increases the risk of piracy, whereas in the South China Sea higher sea surface temperature is associated with increasing fish production, which in turn decreases the risk of piracy. Our results also show that decreases in fish production bring about a larger number of successful piracy attacks in East Africa and that increases in fish production are associated with fewer successful attacks in the South China Sea. We discuss the theoretical and policy implications of the findings and point out that as climate change continues, its impact on specific crimes will likely be complex, with increases and decreases depending on context.

Significance Statement

There is little evidence on the effect of climate change on criminal behavior. This study seeks to quantify the impact of a specific type of climate change—rising sea temperature—on maritime piracy, a type of crime that is linked exclusively to the ocean. The risk of piracy attacks and the probability of successful attacks are higher with declines in fish production in East Africa and lower with increases in fish production in the South China Sea. These results suggest that climate change does affect maritime piracy rates and that its effect depends on the specific situational context and the rational choices that changing sea temperatures generate.

Free access