Browse

You are looking at 21 - 23 of 23 items for :

  • Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) x
  • Refine by Access: All Content x
Clear All
Allison B. Marquardt Collow and Mark A. Miller

Abstract

Changes in the climate system of the Amazon rain forest of Brazil can impact factors that influence the radiation budget such as clouds, atmospheric moisture, and the surface albedo. This study examines the relationships between clouds and radiation in this region using surface observations from the first year of the deployment of the Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility 1 (AMF1) in Manacapuru, Brazil, and satellite measurements from the Clouds and the Earth’s Radiant Energy System (CERES). The seasonal cycles of the radiation budget and cloud radiative effects (CREs) are evaluated at the top of the atmosphere (TOA), at the surface, and within the atmospheric column using these observations and are placed into a regional context using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Water vapor and clouds are abundant throughout the year, even though slight decreases are observed in the dry season. The column water vapor load is large enough that the longwave radiative flux divergence is nearly constant throughout the year. Clouds produce a significant shortwave CRE at the surface and TOA, exceeding 200 W m−2 during the wet season. Discrepancies, especially in column shortwave radiative absorption, between the observations and MERRA-2 are demonstrated that warrant additional analysis of the microphysical and macrophysical cloud properties in MERRA-2. More trustworthy fields in the MERRA-2 product suggest that the expansive nearby river system impacts the regional radiation budget and thereby renders AMF1 observations potentially biased relative to regions farther removed from rivers within the Amazon rain forest.

Full access
Lawrence Coy, Krzysztof Wargan, Andrea M. Molod, William R. McCarty, and Steven Pawson

Abstract

The structure, dynamics, and ozone signal of the quasi-biennial oscillation (QBO) produced by the 35-yr NASA Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag (GWD), and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that MERRA-2 produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50-hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (from October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.

Full access
Krzysztof Wargan and Lawrence Coy

Abstract

The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.

Full access