Browse

You are looking at 21 - 30 of 40 items for :

  • Terrain-Induced Rotor Experiment (T-Rex) x
  • Refine by Access: All Content x
Clear All
Qingfang Jiang and James D. Doyle

Abstract

The impact of moist processes on mountain waves over Sierra Nevada Mountain Range is investigated in this study. Aircraft measurements over Owens Valley obtained during the Terrain-induced Rotor Experiment (T-REX) indicate that mountain waves were generally weaker when the relative humidity maximum near the mountaintop level was above 70%. Four moist cases with a RH maximum near the mountaintop level greater than 90% have been further examined using a mesoscale model and a linear wave model. Two competing mechanisms governing the influence of moisture on mountain waves have been identified. The first mechanism involves low-level moisture that enhances flow–terrain interaction by reducing windward flow blocking. In the second mechanism, the moist airflow tends to damp mountain waves through destratifying the airflow and reducing the buoyancy frequency. The second mechanism dominates in the presence of a deep moist layer in the lower to middle troposphere, and the wave amplitude is significantly reduced associated with a smaller moist buoyancy frequency. With a shallow moist layer and strong low-level flow, the two mechanisms can become comparable in magnitude and largely offset each other.

Full access
Patrick A. Reinecke and Dale R. Durran

Abstract

The sensitivity of downslope wind forecasts to small changes in initial conditions is explored by using 70-member ensemble simulations of two prototypical windstorms observed during the Terrain-Induced Rotor Experiment (T-REX). The 10 weakest and 10 strongest ensemble members are composited and compared for each event.

In the first case, the 6-h ensemble-mean forecast shows a large-amplitude breaking mountain wave and severe downslope winds. Nevertheless, the forecasts are very sensitive to the initial conditions because the difference in the downslope wind speeds predicted by the strong- and weak-member composites grows to larger than 28 m s−1 over the 6-h forecast. The structure of the synoptic-scale flow one hour prior to the windstorm and during the windstorm is very similar in both the weak- and strong-member composites.

Wave breaking is not a significant factor in the second case, in which the strong winds are generated by a layer of high static stability flowing beneath a layer of weaker mid- and upper-tropospheric stability. In this case, the sensitivity to initial conditions is weaker but still significant. The difference in downslope wind speeds between the weak- and strong-member composites grows to 22 m s−1 over 12 h. During and one hour before the windstorm, the synoptic-scale flow exhibits appreciable differences between the strong- and weak-member composites. Although this case appears to be more predictable than the wave-breaking event, neither case suggests that much confidence should be placed in the intensity of downslope winds forecast 12 or more hours in advance.

Full access
Stephan F. J. De Wekker and Shane D. Mayor

Abstract

First results are presented from the deployment of the NCAR Raman-Shifted Eye-Safe Aerosol Lidar (REAL) in the Owens Valley of California during the Terrain-Induced Rotor Experiment (T-REX) in March and April 2006. REAL operated in range–height indicator (RHI) and plan position indicator (PPI) scanning modes to observe the vertical and horizontal structures of the aerosol and cloud distribution in a broad valley in the lee of a tall mountain range. The scans produce two-dimensional cross sections that when animated produce time-lapse visualizations of the microscale and mesoscale atmospheric structures and dynamics. The 2-month dataset includes a wide variety of interesting atmospheric phenomena. When the synoptic-scale flow is strong and westerly, the lidar data reveal mountain-induced waves, hydraulic jumps, and rotorlike circulations that lift aerosols to altitudes of more than 2 km above the valley. Shear instabilities occasionally leading to breaking waves were observed in cloud and aerosol layers under high wind conditions. In quiescent conditions, the data show multiple aerosol layers, upslope flows, and drainage flows interacting with valley flows. The results demonstrate that a rapidly scanning, eye-safe, ground-based aerosol lidar can be used to observe important features of clear-air atmospheric flows and can contribute to an improved understanding of mountain-induced meteorological phenomena. The research community is encouraged to use the dataset in support of their observational analysis and modeling efforts.

Full access
Yanping Li, Ronald B. Smith, and Vanda Grubišić

Abstract

Harmonic analysis has been applied to data from nearly 1000 Automatic Surface Observation System (ASOS) stations over the United States to extract diurnal pressure signals. The largest diurnal pressure amplitudes (∼200 Pa) and the earliest phases (∼0600 LST for surface pressure maximum) were found for stations located within deep mountain valleys in the western United States. The origin of these unique characteristics of valley pressure signals is examined with a detailed study of Owens Valley, California. Analysis of observational data from the Terrain-Induced Rotor Experiment (T-REX) project shows that the ratio of the valley surface pressure to temperature amplitude can be used to estimate the daily maximum mixed-layer depth H. On days with strong westerly winds above the valley, the mixed layer is found to be shallower than on quiescent days because of a flushing effect in the upper parts of the valley. Idealized two-dimensional Weather Research and Forecasting Model simulations were used to explain the pressure signal. In agreement with observations, the simulations show a 3-h difference between the occurrence of a surface pressure minimum (1800 LST) and a surface temperature maximum (1500 LST). The resolved energy budget analysis reveals that this time lag is caused by the persistence of subsidence warming in the upper part of the valley after the surface begins to cool. Sensitivity tests for different valley depths and seasons show that the relative height of the mixed-layer depth with respect to the valley depth, along with the valley width-to-depth ratio, determine whether the diurnal valley circulation is a “confined” system or an “open” system. The open system has a smaller pressure amplitude and an earlier pressure phase.

Full access
Vanda Grubišić and Ivana Stiperski

Abstract

Lee-wave resonance over double bell-shaped obstacles is investigated through a series of idealized high-resolution numerical simulations with the nonhydrostatic Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model using a free-slip lower boundary condition. The profiles of wind speed and stability as well as terrain derive from observations of lee-wave events over the Sierra Nevada and Inyo Mountains from the recently completed Terrain-Induced Rotor Experiment (T-REX).

Numerical experiments show that double bell-shaped obstacles promote trapped lee waves that are in general shorter than those excited by an isolated ridge. While the permissible trapped lee-wave modes are determined by the upstream atmospheric structure, primarily vertical wind shear, the selected lee-wave wavelengths for two obstacles that are close or equal in height are dictated by the discrete terrain spectrum and correspond to higher harmonics of the primary orographic wavelength, which is equal to the ridge separation distance. The exception is the smallest ridge separation distance examined, one that corresponds to the Owens Valley width and is closest to the wavelength determined by the given upstream atmospheric structure, for which the primary lee-wave and orographic wavelengths were found to nearly coincide.

The influence two mountains exert on the overall lee-wave field is found to persist at very large ridge separation distances. For the nonlinear nonhydrostatic waves examined, the ridge separation distance is found to exert a much stronger control over the lee-wave wavelengths than the mountain half-width. Positive and negative interferences of lee waves, which can be detected through their imprint on wave drag and wave amplitudes, were found to produce appreciable differences in the flow structure mainly over the downstream peak, with negative interference characterized by a highly symmetric flow pattern leading to a low drag state.

Full access
James D. Doyle, Vanda Grubišić, William O. J. Brown, Stephan F. J. De Wekker, Andreas Dörnbrack, Qingfang Jiang, Shane D. Mayor, and Martin Weissmann

Abstract

High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of ∼500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors.

Full access
Patrick A. Reinecke and Dale Durran

Abstract

The tendency of high-resolution numerical weather prediction (NWP) models to overpredict the strength of vertically propagating mountain waves is explored. Discrete analytic mountain-wave solutions are presented for the classical problem of cross-mountain flow in an atmosphere with constant wind speed and stability. Time-dependent linear numerical solutions are also obtained for more realistic atmospheric structures. On one hand, using second-order-accurate finite differences on an Arakawa C grid to model nonhydrostatic flow over what might be supposed to be an adequately resolved 8Δx-wide mountain can lead to an overamplification of the standing mountain wave by 30%–40%. On the other hand, the same finite-difference scheme underestimates the wave amplitude in hydrostatic flow over an 8Δx-wide mountain. Increasing the accuracy of the advection scheme to the fourth order significantly reduces the numerical errors associated with both the hydrostatic and nonhydrostatic discrete solutions. The Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) model is used to generate two 70-member ensemble simulations of a mountain-wave event during the Terrain-Induced Rotor Experiment. It is shown that switching from second-order advection to fourth-order advection leads to as much as a 20 m s−1 decrease in vertical velocity on the lee side of the Sierra Nevada, and that the weaker fourth-order solutions are more consistent with observations.

Full access
Junhong Wang, Jianchun Bian, William O. Brown, Harold Cole, Vanda Grubišić, and Kate Young

Abstract

The primary goal of this study is to explore the potential for estimating the vertical velocity (VV) of air from the surface to the stratosphere, using widely available radiosonde and dropsonde data. The rise and fall rates of radiosondes and dropsondes, respectively, are a combination of the VV of the atmosphere and still-air rise–fall rates. The still-air rise–fall rates are calculated using basic fluid dynamics and characteristics of radiosonde and dropsonde systems. This study validates the technique to derive the VV from radiosonde and dropsonde data and demonstrates its value. This technique can be easily implemented by other users for various scientific applications.

The technique has been applied to the Terrain-induced Rotor Experiment (T-REX) dropsonde and radiosonde data. Comparisons among radiosonde, dropsonde, aircraft, and profiling radar vertical velocities show that the sonde-estimated VV is able to capture and describe events with strong vertical motions (larger than ∼1 m s−1) observed during T-REX. The VV below ∼5 km above ground, however, is overestimated by the radiosonde data. The analysis of derived VVs shows interesting features of gravity waves, rotors, and turbulence. Periodic variations of vertical velocity in the stratosphere, as indicated by the radiosonde data, correspond to the horizontal wavelength of gravity waves with an averaged horizontal wavelength of ∼15 km. Two-dimensional VV structure is described in detail by successive dropsonde deployment.

Full access
C. David Whiteman, Sebastian W. Hoch, and Gregory S. Poulos

Abstract

At slope and valley floor sites in the Owens Valley of California, the late afternoon near-surface air temperature decline is often followed by a temporary temperature rise before the expected nighttime cooling resumes. The spatial and temporal patterns of this evening warming phenomenon, as seen in the March/April 2006 Terrain-Induced Rotor Experiment, are investigated using a widely distributed network of 51 surface-based temperature dataloggers. Hypotheses on the causes of the temperature rises are tested using heavily instrumented 34-m meteorological towers that were located within the datalogger array. The evening temperature rise follows the development of a shallow temperature deficit layer over the slopes and floor of the valley in which winds blow downslope. Background winds within the valley, freed from frictional deceleration from the earth’s surface by this layer, accelerate. The increased vertical wind shear across the temperature deficit layer eventually creates shear instability and mixes out the layer, creating the observed warming near the ground. As momentum is exchanged during the mixing event, the wind direction near the surface gradually turns from downslope to the background wind direction. After the short period of warming associated with the mixing, ongoing net radiative loss causes a resumption of the cooling.

Full access
Susanne Drechsel, Georg J. Mayr, Michel Chong, Martin Weissmann, Andreas Dörnbrack, and Ronald Calhoun

Abstract

During the field campaign of the Terrain-induced Rotor Experiment (T-REX) in the spring of 2006, Doppler lidar measurements were taken in the complex terrain of the Californian Owens Valley for six weeks. While fast three-dimensional (3D) wind analysis from measured radial wind components is well established for dual weather radars, only the feasibility was shown for dual-Doppler lidars. A computationally inexpensive, variational analysis method developed for multiple-Doppler radar measurements over complex terrain was applied. The general flow pattern of the 19 derived 3D wind fields is slightly smoothed in time and space because of lidar scan duration and analysis algorithm. The comparison of extracted wind profiles to profiles from radiosondes and wind profiler reveals differences of wind speed and direction of less than 1.1 m s−1 and 3°, on average, with standard deviations not exceeding 2.7 m s−1 and 27°, respectively. Standard velocity–azimuth display (VAD) retrieval method provided higher vertical resolution than the dual-Doppler retrieval, but no horizontal structure of the flow field. The authors suggest a simple way to obtain a good first guess for a dual-lidar scan strategy geared toward 3D wind retrieval that minimizes scan duration and maximizes spatial coverage.

Full access