Browse
Abstract
Temperature-related illness (TRI) encompasses heat-related illness, such as heat exhaustion and heatstroke, and cold-related illness, such as frostbite and hypothermia. TRI is typically the result of exposure to ambient weather conditions; because of this, unhoused individuals are hypothesized to have higher risk of TRI. However, no national epidemiological studies have been completed to determine this risk. The objective of this study was to determine the association between homelessness and emergency department (ED) diagnosis of TRI in the United States. We conducted a cross-sectional study of adult ED visits in the U.S. from 2005 through 2020 using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a nationally representative sample of non-federal ED patient visits. Housing status (housed vs. unhoused) was measured using NHAMCS patient residence category, with blank responses excluded. TRI was defined as ED clinician diagnosis of heat- or cold-related illness using ICD-9 and ICD-10 codes. Multivariable logistic regression was used to determine adjusted odds of TRI by housing status. There were 323,606 non-pediatric ED visits in the NHAMCS sample. TRI diagnosis was present in 288 (0.09%) visits. 4099 visits (0.9%) were categorized as unhoused. After adjusting for sex, mental health diagnosis, and alcohol or substance use or use disorder, the odds of TRI diagnosis in unhoused individuals was 4.08 (95% CI 2.09,7.95) compared to housed individuals. We found a higher adjusted odds of TRI diagnosis at an ED visit among unhoused individuals compared with housed individuals.
Abstract
Temperature-related illness (TRI) encompasses heat-related illness, such as heat exhaustion and heatstroke, and cold-related illness, such as frostbite and hypothermia. TRI is typically the result of exposure to ambient weather conditions; because of this, unhoused individuals are hypothesized to have higher risk of TRI. However, no national epidemiological studies have been completed to determine this risk. The objective of this study was to determine the association between homelessness and emergency department (ED) diagnosis of TRI in the United States. We conducted a cross-sectional study of adult ED visits in the U.S. from 2005 through 2020 using data from the National Hospital Ambulatory Medical Care Survey (NHAMCS), a nationally representative sample of non-federal ED patient visits. Housing status (housed vs. unhoused) was measured using NHAMCS patient residence category, with blank responses excluded. TRI was defined as ED clinician diagnosis of heat- or cold-related illness using ICD-9 and ICD-10 codes. Multivariable logistic regression was used to determine adjusted odds of TRI by housing status. There were 323,606 non-pediatric ED visits in the NHAMCS sample. TRI diagnosis was present in 288 (0.09%) visits. 4099 visits (0.9%) were categorized as unhoused. After adjusting for sex, mental health diagnosis, and alcohol or substance use or use disorder, the odds of TRI diagnosis in unhoused individuals was 4.08 (95% CI 2.09,7.95) compared to housed individuals. We found a higher adjusted odds of TRI diagnosis at an ED visit among unhoused individuals compared with housed individuals.
Abstract
Nongovernmental organizations (NGOs) have increasingly played pivotal roles in shaping climate agendas and mobilizing individuals to engage in environmental initiatives. However, the nature of NGOs’ online interaction with users, especially in developing countries, remains largely unexplored. This study focused on the dynamics of engagement between a Chinese NGO, Chinese Weather Enthusiasts (CWE), and Chinese youth on the social media platform of Bilibili. The research comprised two main components. First, named entity recognition was employed to analyze weather-related terms in CWE’s posts on Bilibili and dynamic topic modeling was utilized to uncover shifts in thematic focus. Subsequently, descriptive analysis and negative binomial regression were employed to investigate the correlation between weather types and user engagement metrics. The study unveiled two noteworthy findings: first, CWE posts are closely linked to short-term weather, providing timely content that may meet the public’s demand for climate information. Second, the engagement of Chinese youth users is not affected by extreme weather types. Future research should continue to elucidate strategies that NGOs can employ to enhance online engagement among youth users.
Significance Statement
This study seeks to contribute to the current literature of climate communication by investigating how NGOs engage with Chinese youth on social media, an area that has received scant attention thus far. Focusing on an influential Chinese climate NGO, CWE, and its interactions with Chinese youth on the social media platform of Bilibili, this research sheds lights on strategies to communicate information related to extreme weather to this demographic. Examining factors that influence online user engagement offers both theoretical insights about the mechanisms of climate communication and practical implications for NGOs and policymakers to mobilize youth for environmental initiatives. The findings also underscore the importance of tailoring climate communication to align with the daily experiences of the target audience and public-centric approaches in climate communication strategies.
Abstract
Nongovernmental organizations (NGOs) have increasingly played pivotal roles in shaping climate agendas and mobilizing individuals to engage in environmental initiatives. However, the nature of NGOs’ online interaction with users, especially in developing countries, remains largely unexplored. This study focused on the dynamics of engagement between a Chinese NGO, Chinese Weather Enthusiasts (CWE), and Chinese youth on the social media platform of Bilibili. The research comprised two main components. First, named entity recognition was employed to analyze weather-related terms in CWE’s posts on Bilibili and dynamic topic modeling was utilized to uncover shifts in thematic focus. Subsequently, descriptive analysis and negative binomial regression were employed to investigate the correlation between weather types and user engagement metrics. The study unveiled two noteworthy findings: first, CWE posts are closely linked to short-term weather, providing timely content that may meet the public’s demand for climate information. Second, the engagement of Chinese youth users is not affected by extreme weather types. Future research should continue to elucidate strategies that NGOs can employ to enhance online engagement among youth users.
Significance Statement
This study seeks to contribute to the current literature of climate communication by investigating how NGOs engage with Chinese youth on social media, an area that has received scant attention thus far. Focusing on an influential Chinese climate NGO, CWE, and its interactions with Chinese youth on the social media platform of Bilibili, this research sheds lights on strategies to communicate information related to extreme weather to this demographic. Examining factors that influence online user engagement offers both theoretical insights about the mechanisms of climate communication and practical implications for NGOs and policymakers to mobilize youth for environmental initiatives. The findings also underscore the importance of tailoring climate communication to align with the daily experiences of the target audience and public-centric approaches in climate communication strategies.
Abstract
This paper analyzes findings from semistructured interviews and focus groups with 31 farmers in the Willamette Valley in which farmers were asked about their needs for climate data and about the usability of a range of outputs from the Community Earth System Model, version 2 (CESM2), for their soil management practices. Findings indicate that climate and soils data generated from CESM and other Earth system models (ESMs), despite their coarse spatial scale resolutions, can inform farmers’ long-term decisions, but that the data would be more usable if the outputs were provided in a format that allowed farmers to choose the variables and thresholds relevant to their particular needs and if ESMs incorporated farmer practices including residue removal, cover cropping, and tillage levels into the model operations so that farmers could better understand the impacts of their decisions. Findings also suggest that although there is a significant gap in the spatial resolution at which these global ESMs generate data and the spatial resolution needed by farmers to make most decisions, farmers are adept at making scalar adjustments to apply coarse-resolution data to the specifics of their own farm’s microclimate. Thus, our findings suggest that, to support agricultural decision-making, development priorities for ESMs should include developing better representations of agricultural management practices within the models and creating interactive data dashboards or platforms.
Abstract
This paper analyzes findings from semistructured interviews and focus groups with 31 farmers in the Willamette Valley in which farmers were asked about their needs for climate data and about the usability of a range of outputs from the Community Earth System Model, version 2 (CESM2), for their soil management practices. Findings indicate that climate and soils data generated from CESM and other Earth system models (ESMs), despite their coarse spatial scale resolutions, can inform farmers’ long-term decisions, but that the data would be more usable if the outputs were provided in a format that allowed farmers to choose the variables and thresholds relevant to their particular needs and if ESMs incorporated farmer practices including residue removal, cover cropping, and tillage levels into the model operations so that farmers could better understand the impacts of their decisions. Findings also suggest that although there is a significant gap in the spatial resolution at which these global ESMs generate data and the spatial resolution needed by farmers to make most decisions, farmers are adept at making scalar adjustments to apply coarse-resolution data to the specifics of their own farm’s microclimate. Thus, our findings suggest that, to support agricultural decision-making, development priorities for ESMs should include developing better representations of agricultural management practices within the models and creating interactive data dashboards or platforms.
Abstract
To produce a climate-literate society willing to take action, students must be educated on the causes, changes, impacts, and solutions of climate change. One way to ensure students are educated on climate change is to have robust science standards. However, little is known about the collective climate change standards in the United States. Therefore, the purpose of this study is to conduct an analysis of the U.S. K–12 science standards to uncover where the climate change standards are located in different grade levels and the extent to which the collective U.S. curriculum covers topics of climate change. This study was a qualitative content analysis of the U.S. K–12 climate change standards. The results show that most U.S. climate change standards are found within the high school grade levels and Earth and space science domains. All U.S. states address topics of climate change within their standards; however, general mentions of climate change were cited most often. Finally, the majority of states address both natural and anthropogenic causes of climate change. Implications for policymakers and educators are included.
Abstract
To produce a climate-literate society willing to take action, students must be educated on the causes, changes, impacts, and solutions of climate change. One way to ensure students are educated on climate change is to have robust science standards. However, little is known about the collective climate change standards in the United States. Therefore, the purpose of this study is to conduct an analysis of the U.S. K–12 science standards to uncover where the climate change standards are located in different grade levels and the extent to which the collective U.S. curriculum covers topics of climate change. This study was a qualitative content analysis of the U.S. K–12 climate change standards. The results show that most U.S. climate change standards are found within the high school grade levels and Earth and space science domains. All U.S. states address topics of climate change within their standards; however, general mentions of climate change were cited most often. Finally, the majority of states address both natural and anthropogenic causes of climate change. Implications for policymakers and educators are included.
Abstract
The impacts of climate change on health are a critical public health issue, but the association between extreme temperatures and birth outcomes remains poorly understood. This paper links over 1 million birth records from Dongguan, China, between 2004 and 2013, to meteorological data. We investigate the relationship between extreme temperatures and birth outcomes and explore the heterogeneity among different demographic and socioeconomic factors, including maternal migrant status, education level, and mode of delivery. We find that one percentage increase in the number of days exposed to extreme heat during pregnancy is associated with a reduction in birth weight of 2.31 g and a 2% increase in odds of low birth weight (LBW), while exposure to extreme cold temperatures is associated with a reduction in birth weight (0.66 g) and an increase in the risk of LBW (1%). The association between extreme high temperatures and adverse birth outcomes is stronger for groups with disadvantaged social status. Specifically, the migrant group (for extreme heat exposure, local residents, −0.37 g; intraprovincial migrants, −2.75 g; out-of-province migrants, −2.49 g), the less-educated group (for extreme heat exposure, middle school or below, −2.47 g; high school or above, −1.66 g), and the group with vaginal birth [for extreme heat exposure, cesarean sections (C-sections), −1.56 g; vaginal birth, −2.62 g] are more sensitive to extreme weather conditions. Our study provides further evidence about the association of extreme temperatures with birth outcomes and for vulnerable groups of pregnant women.
Abstract
The impacts of climate change on health are a critical public health issue, but the association between extreme temperatures and birth outcomes remains poorly understood. This paper links over 1 million birth records from Dongguan, China, between 2004 and 2013, to meteorological data. We investigate the relationship between extreme temperatures and birth outcomes and explore the heterogeneity among different demographic and socioeconomic factors, including maternal migrant status, education level, and mode of delivery. We find that one percentage increase in the number of days exposed to extreme heat during pregnancy is associated with a reduction in birth weight of 2.31 g and a 2% increase in odds of low birth weight (LBW), while exposure to extreme cold temperatures is associated with a reduction in birth weight (0.66 g) and an increase in the risk of LBW (1%). The association between extreme high temperatures and adverse birth outcomes is stronger for groups with disadvantaged social status. Specifically, the migrant group (for extreme heat exposure, local residents, −0.37 g; intraprovincial migrants, −2.75 g; out-of-province migrants, −2.49 g), the less-educated group (for extreme heat exposure, middle school or below, −2.47 g; high school or above, −1.66 g), and the group with vaginal birth [for extreme heat exposure, cesarean sections (C-sections), −1.56 g; vaginal birth, −2.62 g] are more sensitive to extreme weather conditions. Our study provides further evidence about the association of extreme temperatures with birth outcomes and for vulnerable groups of pregnant women.
Abstract
A violent tornado occurred in Czechia on 24 June 2021, killing six and causing at least 576 injuries. There were more indirect than direct injuries. The tornado was rated 4 on the international Fujita scale (IF4) using a draft version of the IF scale. This was the first violent tornado in Czechia and one of only 17 violent, i.e., (I)F4 or higher, tornadoes that occurred in Europe since 1950. The tornado reached a width of 3.5 km, the widest on record in Europe. The case presents an important opportunity to investigate the impacts of such a strong tornado in the area, where they are rare, no tornado warnings are issued, and where the building standards are different from the typically investigated tornadoes in the United States. We discuss challenges in organizing the damage survey, which took 3 days and involved meteorologists from three countries. A wind damage survey guide to aid mitigating these was written by the European Severe Storms Laboratory and initiated the development of a wind damage surveying app. The damage survey showed that most of the inhabited buildings built using heavy masonry and rigid ceilings did not collapse in IF2/3 winds, but only with IF4 winds. Eyewitness reports collected after the tornado show that many people were not aware of the risk associated with the tornado. Eventually, most people tried to shelter in the most secure part of the house, but it was often too late. This case highlights the need for better communication of tornado risk to the public in Europe.
Abstract
A violent tornado occurred in Czechia on 24 June 2021, killing six and causing at least 576 injuries. There were more indirect than direct injuries. The tornado was rated 4 on the international Fujita scale (IF4) using a draft version of the IF scale. This was the first violent tornado in Czechia and one of only 17 violent, i.e., (I)F4 or higher, tornadoes that occurred in Europe since 1950. The tornado reached a width of 3.5 km, the widest on record in Europe. The case presents an important opportunity to investigate the impacts of such a strong tornado in the area, where they are rare, no tornado warnings are issued, and where the building standards are different from the typically investigated tornadoes in the United States. We discuss challenges in organizing the damage survey, which took 3 days and involved meteorologists from three countries. A wind damage survey guide to aid mitigating these was written by the European Severe Storms Laboratory and initiated the development of a wind damage surveying app. The damage survey showed that most of the inhabited buildings built using heavy masonry and rigid ceilings did not collapse in IF2/3 winds, but only with IF4 winds. Eyewitness reports collected after the tornado show that many people were not aware of the risk associated with the tornado. Eventually, most people tried to shelter in the most secure part of the house, but it was often too late. This case highlights the need for better communication of tornado risk to the public in Europe.
Abstract
Climate and weather-related disasters in California illustrate the need for immediate climate change action—both mitigation to reduce impacts and adaptation to protect our communities, relatives, and the ecosystems we depend upon. Indigenous frontline communities face even greater threats from climate impacts due to historical and political legacies of environmental injustice. Climate change adaptation actions have proven challenging to implement as communities struggle to access necessary climate data at appropriate scales, identify effective strategies that address community priorities, and obtain resources to act at a whole-community level. In this paper, we present three examples of Indigenous communities in California that have used a climate justice approach to climate change adaptation. These communities are drawing upon community knowledge and expertise to address the challenges of adaptation planning and taking actions that center community priorities. The three cases address emergency preparation and response, cultural burning and fire management, and community organizing and social cohesion. Across these spheres, they illustrate the ways in which a community-based and climate justice-focused approach to adaptation can be effective in addressing current threats while also addressing the legacy of imposed, socially constructed vulnerability and environmental injustices. Because we recognize the need for multiple knowledges and skills in adaptation actions, we include recommendations that have emerged based on what has been learned through these long-standing and engaged participatory research collaborations for climate scientists who wish to contribute to climate justice-focused adaptation efforts by using scientific data to support—not supplant—community efforts, target funding toward genuine community engagement and adaptation actions, and become aware of the historical and political legacies that created the climate vulnerabilities and injustices evident today.
Abstract
Climate and weather-related disasters in California illustrate the need for immediate climate change action—both mitigation to reduce impacts and adaptation to protect our communities, relatives, and the ecosystems we depend upon. Indigenous frontline communities face even greater threats from climate impacts due to historical and political legacies of environmental injustice. Climate change adaptation actions have proven challenging to implement as communities struggle to access necessary climate data at appropriate scales, identify effective strategies that address community priorities, and obtain resources to act at a whole-community level. In this paper, we present three examples of Indigenous communities in California that have used a climate justice approach to climate change adaptation. These communities are drawing upon community knowledge and expertise to address the challenges of adaptation planning and taking actions that center community priorities. The three cases address emergency preparation and response, cultural burning and fire management, and community organizing and social cohesion. Across these spheres, they illustrate the ways in which a community-based and climate justice-focused approach to adaptation can be effective in addressing current threats while also addressing the legacy of imposed, socially constructed vulnerability and environmental injustices. Because we recognize the need for multiple knowledges and skills in adaptation actions, we include recommendations that have emerged based on what has been learned through these long-standing and engaged participatory research collaborations for climate scientists who wish to contribute to climate justice-focused adaptation efforts by using scientific data to support—not supplant—community efforts, target funding toward genuine community engagement and adaptation actions, and become aware of the historical and political legacies that created the climate vulnerabilities and injustices evident today.
Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.
Abstract
In 2021, the energy sector was put at risk by extreme weather in many different ways: North America and Spain suffered heavy winter storms that led to the collapse of the electricity network; California specifically experienced heavy droughts and heat-wave conditions, causing the operations of hydropower stations to halt; floods caused substantial damage to energy infrastructure in central Europe, Australia, and China throughout the year, and unusual wind drought conditions decreased wind power production in the United Kingdom by almost 40% during summer. The total economic impacts of these extreme weather events are estimated at billions of U.S. dollars. Here we review and assess in some detail the main extreme weather events that impacted the energy sector in 2021 worldwide, discussing some of the most relevant case studies and the meteorological conditions that led to them. We provide a perspective on their impacts on electricity generation, transmission, and consumption, and summarize estimations of economic losses.
Abstract
Although many people believe their pain fluctuates with weather conditions, both weather and pain may be associated with time spent outside. For example, pleasant weather may mean that people spend more time outside doing physical activity and are exposed to the weather, leading to more (or less) pain, and poor weather or severe pain may keep people inside, sedentary, and not exposed to the weather. We conducted a smartphone study where participants with chronic pain reported daily pain severity, as well as time spent outside. We address the relationship between four weather variables (temperature, dewpoint temperature, pressure, and wind speed) and pain by proposing a three-step approach to untangle their effects: (i) propose a set of plausible directed acyclic graphs (DAGs) that account for potential roles of time spent outside (e.g., collider, effect modifier, mediator); (ii) analyze the compatibility of the observed data with the assumed model; and (iii) identify the most plausible model by combining evidence from the observed data and domain-specific knowledge. We found that the data do not support time spent outside as a collider or mediator of the relationship between weather variables and pain. On the other hand, time spent outside modifies the effect between temperature and pain, as well as wind speed and pain, with the effect being absent on days that participants spent inside and present if they spent some or all of the day outside. Our results show the utility of using directed acyclic graphs for studying causal inference.
Significance Statement
Three-quarters of people living with chronic pain believe that weather influences their pain. However, people staying inside would not be exposed to the weather outside, and good weather may mean that people are more active outside, leading to more or less pain. To obtain data to calculate how the amount of time spent outside affects the weather–pain relationship, we conducted a 15-month smartphone study collecting daily pain reports and nearby weather for nearly 5000 participants in the United Kingdom. We found that time spent outside modifies the relationship between temperature/wind speed and pain, showing the importance of accounting for other factors when investigating the association between weather and chronic pain, which could guide future research into pain mitigation and management.
Abstract
Although many people believe their pain fluctuates with weather conditions, both weather and pain may be associated with time spent outside. For example, pleasant weather may mean that people spend more time outside doing physical activity and are exposed to the weather, leading to more (or less) pain, and poor weather or severe pain may keep people inside, sedentary, and not exposed to the weather. We conducted a smartphone study where participants with chronic pain reported daily pain severity, as well as time spent outside. We address the relationship between four weather variables (temperature, dewpoint temperature, pressure, and wind speed) and pain by proposing a three-step approach to untangle their effects: (i) propose a set of plausible directed acyclic graphs (DAGs) that account for potential roles of time spent outside (e.g., collider, effect modifier, mediator); (ii) analyze the compatibility of the observed data with the assumed model; and (iii) identify the most plausible model by combining evidence from the observed data and domain-specific knowledge. We found that the data do not support time spent outside as a collider or mediator of the relationship between weather variables and pain. On the other hand, time spent outside modifies the effect between temperature and pain, as well as wind speed and pain, with the effect being absent on days that participants spent inside and present if they spent some or all of the day outside. Our results show the utility of using directed acyclic graphs for studying causal inference.
Significance Statement
Three-quarters of people living with chronic pain believe that weather influences their pain. However, people staying inside would not be exposed to the weather outside, and good weather may mean that people are more active outside, leading to more or less pain. To obtain data to calculate how the amount of time spent outside affects the weather–pain relationship, we conducted a 15-month smartphone study collecting daily pain reports and nearby weather for nearly 5000 participants in the United Kingdom. We found that time spent outside modifies the relationship between temperature/wind speed and pain, showing the importance of accounting for other factors when investigating the association between weather and chronic pain, which could guide future research into pain mitigation and management.