Browse

You are looking at 51 - 60 of 23,191 items for :

  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All
Stephen W. Nesbitt, Paola V. Salio, Eldo Ávila, Phillip Bitzer, Lawrence Carey, V. Chandrasekar, Wiebke Deierling, Francina Dominguez, Maria Eugenia Dillon, C. Marcelo Garcia, David Gochis, Steven Goodman, Deanna A. Hence, Karen A. Kosiba, Matthew R. Kumjian, Timothy Lang, Lorena Medina Luna, James Marquis, Robert Marshall, Lynn A. McMurdie, Ernani Lima Nascimento, Kristen L. Rasmussen, Rita Roberts, Angela K. Rowe, Juan José Ruiz, Eliah F.M.T. São Sabbas, A. Celeste Saulo, Russ S. Schumacher, Yanina Garcia Skabar, Luiz Augusto Toledo Machado, Robert J. Trapp, Adam Varble, James Wilson, Joshua Wurman, Edward J. Zipser, Ivan Arias, Hernán Bechis, and Maxwell A. Grover

CAPSULE

RELAMPAGO was a multinational field campaign that collected detailed measurements of deep convective storms, high-impact weather, and their effects in Argentina and Brazil.

Full access
Clay S. Tucker, Jill C. Trepanier, Pamela B. Blanchard, Ed Bush, James W. Jordan, Mark J. Shafer, and John Andrew Nyman

Abstract

Environmental education is key in solving environmental problems and for producing a future workforce capable of solving issues of climate change. Over the last two decades, the Coastal Roots Program at Louisiana State University (LSU) has reached more than 26,676 K-12 students in Louisiana to teach them environmental science and has brought them to restoration sites to plant 194,336 school-grown trees and grasses. The co-directors of Coastal Roots are continually searching for opportunities to enrich the experience of teachers and students in connecting school subjects, Coastal Roots, and stewardship. In school year 2018–2019, students in five local schools entered a pilot program to learn how tree-ring science informs environmental science broadly. During their scheduled restoration planting trips, students were asked to collect the following tree data: tree cores, tree height, tree diameter, tree species, and global positioning system location points. Datawere given to scientists atLSUfor preliminary analysis, and graphical representation of the data were shown to the students for their interpretation. Results from this program indicate that bringing students into the field and teaching them a newscientific skill improved their understanding of environmental science and their role in coastal restoration, and tree-ring data showed significant correlations to various climate parameters in Louisiana. Additionally, we find that bringing this knowledge to teachers allows the knowledge to spread for multiple generations of students. Here we present tree-ring data from this project, lessons learned during the pilot program, advantages to student-based citizen science, and recommendations for similar programs.

Full access
Heidi Kreibich, Paul Hudson, and Bruno Merz

Abstract

Flood warning systems are longstanding success stories in respect to protecting human life, but monetary losses continue to grow. Knowledge on the effectiveness of flood early warning in reducing monetary losses is scarce, especially at the individual level. To gain more knowledge in this area, we analyze a dataset which is unique in respect to detailed information on warning reception and monetary losses at the property level and in respect to amount of data available. The dataset contains 4468 loss cases from six flood events in Germany. These floods occurred between 2002 and 2013. The data from each event was collected by computer aided telephone interviews in four surveys following a repeated cross-sectional design. We quantitatively reveal that flood early warning is only effective in reducing monetary losses when people know what to do when they receive the warning. We also show, that particularly long-term preparedness is associated with people knowing what to do when they receive a warning. Thus, risk communication, training, and (financial) support for private preparedness are effective in mitigating flood losses in two ways: through precautionary measures and more effective emergency responses.

Full access
Adam C. Varble, Stephen W. Nesbitt, Paola Salio, Joseph C. Hardin, Nitin Bharadwaj, Paloma Borque, Paul J. DeMott, Zhe Feng, Thomas C. J. Hill, James N. Marquis, Alyssa Matthews, Fan Mei, Rusen Öktem, Vagner Castro, Lexie Goldberger, Alexis Hunzinger, Kevin R. Barry, Sonia M. Kreidenweis, Greg M. McFarquhar, Lynn A. McMurdie, Mikhail Pekour, Heath Powers, David M. Romps, Celeste Saulo, Beat Schmid, Jason M. Tomlinson, Susan C. van den Heever, Alla Zelenyuk, Zhixiao Zhang, and Edward J. Zipser

Abstract

The Cloud, Aerosol, and Complex Terrain Interactions (CACTI) field campaign was designed to improve understanding of orographic cloud life cycles in relation to surrounding atmospheric thermodynamic, flow, and aerosol conditions. The deployment to the Sierras de Córdoba range in north-central Argentina was chosen because of very frequent cumulus congestus, deep convection initiation, and mesoscale convective organization uniquely observable from a fixed site. The C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar was deployed for the first time with over 50 ARM Mobile Facility atmospheric state, surface, aerosol, radiation, cloud, and precipitation instruments between October 2018 and April 2019. An intensive observing period (IOP) coincident with the RELAMPAGO field campaign was held between 1 November and 15 December during which 22 flights were performed by the ARM Gulfstream-1 aircraft.

A multitude of atmospheric processes and cloud conditions were observed over the 7-month campaign, including: numerous orographic cumulus and stratocumulus events; new particle formation and growth producing high aerosol concentrations; drizzle formation in fog and shallow liquid clouds; very low aerosol conditions following wet deposition in heavy rainfall; initiation of ice in congestus clouds across a range of temperatures; extreme deep convection reaching 21-km altitudes; and organization of intense, hail-containing supercells and mesoscale convective systems. These comprehensive datasets include many of the first ever collected in this region and provide new opportunities to study orographic cloud evolution and interactions with meteorological conditions, aerosols, surface conditions, and radiation in mountainous terrain.

Full access
Graciela B. Raga, Luis A. Ladino, Darrel Baumgardner, Carolina Ramirez-Romero, Fernanda Córdoba, Harry Alvarez-Ospina, Daniel Rosas, Talib Amador, Javier Miranda, Irma Rosas, Alejandro Jaramillo, Jacqueline Yakobi-Hancock, Jong Sung Kim, Leticia Martínez, Eva Salinas, and Bernardo Figueroa

CAPSULE

Particles are systematically characterized for the first time in biomass burning and African dust plumes over Yucatan in the western Caribbean to better understand differences from background marine aerosol.

Full access
Bradley Wade Bishop, Ashley Marie Orehek, and Hannah R. Collier

CAPSULE

Interviewing Earth science data managers and librarians captures the knowledge, skills, and abilities of these data jobs to inform curricula and prepare students as well as those moving into these changing careers.

Full access
Bing Pu and Qinjian Jin

Capsule Summary

The extreme trans-Atlantic dust plume in June 2020 is associated with increased African dust emissions and circulation extremes. Climate projections suggest that trans-Atlantic dust events are more likely to occur.

Full access
D.J. Mullan, I.D. Barr, R.P. Flood, J.M. Galloway, A.M.W. Newton, and G.T. Swindles

Capsule

Warming of 2°C may be a tipping point for the world’s busiest winter road, while enhanced winter warming threatens the viability of winter roads across Arctic North America.

Full access
Thomas W. N. Haine, Renske Gelderloos, Miguel A. Jimenez-Urias, Ali H. Siddiqui, Gerard Lemson, Dimitri Medvedev, Alex Szalay, Ryan P. Abernathey, Mattia Almansi, and Christopher N. Hill

Capsule summary

Fast growth in the fidelity of ocean general circulation models is driving the maturation of Computational Oceanography as a branch of marine science on par with observational oceanography.

Full access
Tristan S. L’Ecuyer, Brian J. Drouin, James Anheuser, Meredith Grames, David Henderson, Xianglei Huang, Brian H. Kahn, Jennifer E. Kay, Boon H. Lim, Marian Mateling, Aronne Merrelli, Nathaniel B. Miller, Sharmila Padmanabhan, Colten Peterson, Nicole-Jeanne Schlegel, Mary L. White, and Yan Xie

CAPSULE SUMMARY

Two compact, low-cost CubeSats promise to open a new window into the full spectrum of polar radiant energy.

Full access