Browse

You are looking at 61 - 70 of 23,191 items for :

  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All
Cara L. Cuite, Rebecca E. Morss, Julie L. Demuth, and William K. Hallman

Abstract

Both hurricanes and nor’easters can be destructive and deadly. The current study investigates whether, when all other features of a storm warning message are held constant, people perceive the risks posed by nor’easters and hurricanes differently and whether these differences affect their attitudes and decisions about taking protective action. We conducted an online experiment involving 1,700 Americans residing in Northeastern coastal ZIP codes to test the effects of storm type (hurricane vs. nor’easter). Participants were told that their area was under an evacuation order due to either a predicted hurricane or nor’easter. Reported message comprehension and perceived relevance were similar across storm type; however, storm type had small but significant effects on other dependent measures. Those in the hurricane condition were more likely to believe the storm would be severe (p =. 007). They were also more likely to say that it is important to evacuate, that they would evacuate their homes, and that they would recommend to their neighbors that they evacuate (ps <.001). Additional analysis demonstrated that the effect of storm type on evacuation likelihood is mediated, at least in part, by perceived severity. These findings provide evidence that people perceive hurricanes as more severe and more likely to require taking protective action than nor’easters, even when other attributes of the storms remain the same. Forecasters, broadcast meteorologists, and emergency management professionals should consider these small but important differences in perceptions when communicating about these types of storms.

Full access
Mark Weber, Kurt Hondl, Nusrat Yussouf, Youngsun Jung, Derek Stratman, Bryan Putnam, Xuguang Wang, Terry Schuur, Charles Kuster, Yixin Wen, Juanzhen Sun, Jeff Keeler, Zhuming Ying, John Cho, James Kurdzo, Sebastian Torres, Chris Curtis, David Schvartzman, Jami Boettcher, Feng Nai, Henry Thomas, Dusan Zrnić, Igor Ivić, Djordje Mirković, Caleb Fulton, Jorge Salazar, Guifu Zhang, Robert Palmer, Mark Yeary, Kevin Cooley, Michael Istok, and Mark Vincent

Abstract

This article summarizes research and risk reduction that will inform acquisition decisions regarding NOAA’s future national operational weather radar network. A key alternative being evaluated is polarimetric phased-array radar (PAR). Research indicates PAR can plausibly achieve fast, adaptive volumetric scanning, with associated benefits for severe-weather warning performance. We assess these benefits using storm observations and analyses, observing system simulation experiments, and real radar-data assimilation studies. Changes in the number and/or locations of radars in the future network could improve coverage at low altitude. Analysis of benefits that might be so realized indicates the possibility for additional improvement in severe-weather and flash-flood warning performance, with associated reduction in casualties. Simulations are used to evaluate techniques for rapid volumetric scanning and assess data quality characteristics of PAR. Finally, we describe progress in developing methods to compensate for polarimetric variable estimate biases introduced by electronic beam-steering. A research-to-operations (R2O) strategy for the PAR alternative for the WSR-88D replacement network is presented.

Full access
Malte F. Stuecker, Christina Karamperidou, Alison D. Nugent, Giuseppe Torri, Sloan Coats, and Steven Businger
Full access
Alexandra K. Anderson-Frey and Harold Brooks

Abstract

In any discussion of forecast evaluation, it is tempting to fall back on statements reflecting unverified assumptions: “this tornado warning had lower skill because the underlying meteorology reflected a complicated or atypical scenario,” or “that forecast performed worse than we would have expected given the straightforward setup.” These statements of what is and is not a reasonable expectation for warning skill are particularly relevant as the meteorological community’s focus has begun to emphasize non-classic storm environments (e.g., tornadoes spawned by quasi-linear convective systems). In this paper, we build a proof-of-concept methodology to quantify the effect of the near-storm environment on tornado warning skill, and we then test these methods on a 15-yr dataset composed of tens of thousands of tornado events and warnings over the contiguous United States. Our findings include that significant tornadoes rated (E)F2+ have a higher probability of detection (POD) than expected based on their near-storm environments, that nocturnal tornadoes have both worse POD and false alarm ratio (FAR) than even their marginal near-storm environments would suggest, and that tornadoes occurring during the summer months also show worse POD and FAR than their environment-based expectation. Quantifying these shifts in performance in an environmental skill score framework allows us to target the situations in which the greatest improvements may be possible, in terms of forecaster training and/or conceptual models. This work also highlights the essential question that should always be asked in the context of forecast verification: what, exactly, is the baseline standard to which we are comparing forecast performance?

Full access
Gabriele Messori, Emanuele Bevacqua, Rodrigo Caballero, Dim Coumou, Paolo De Luca, Davide Faranda, Kai Kornhuber, Olivia Martius, Flavio Pons, Colin Raymond, Kunhui Ye, Pascal Yiou, and Jakob Zscheischler
Open access
Joseph E. Trujillo-Falcón, Orlando Bermúdez, Krizia Negrón-Hernández, John Lipski, Elizabeth Leitman, and Kodi Berry

Abstract

According to recent Census data, the Hispanic or Latino population represents nearly 1 in 5 Americans today, where 71.1% of these individuals speak Spanish at home. Despite increased efforts among the weather enterprise, establishing effective risk communication strategies for Spanish-speaking populations has been an uphill battle. No frameworks exist for translating weather information into the Spanish language, nor are there collective solutions that address this problem within the weather world. The objective of this article is threefold. First, the current translation issue in Spanish is highlighted. Through research conducted at the NOAA/NWS Storm Prediction Center, situations are revealed where regional varieties of Spanish contributed to inconsistent risk messaging across the bilingual weather community. Second, existing resources are featured so that interested readers are aware of ongoing efforts to translate weather information into Spanish. Organizations within the weather service, like the NWS Multimedia Assistance in Spanish Team and the NWS Spanish Outreach Team, are highlighted for their pioneer work on Spanish weather communication. Last, a framework for translation standardization in the atmospheric sciences is introduced, along with future initiatives that are being sought by NWS and AMS to enhance Spanish hazardous weather communication.

Full access
Peyman Abbaszadeh, Hamid Moradkhani, Keyhan Gavahi, Sujay Kumar, Christopher Hain, Xiwu Zhan, Qingyun Duan, Christa Peters-Lidard, and Sepehr Karimiziarani
Full access
Jennifer Collins, Amy Polen, Killian McSweeney, Delián Colón-Burgos, and Isabelle Jernigan

Abstract

The COVID-19 pandemic increases the complexity of planning for hurricanes as social distancing is in direct conflict with human mobility and congregation. COVID-19 presents not only urgent challenges for this hurricane season due to the likeliness of continued or heightened COVID-19 threat, but also challenges with the next hurricane season with additional waves of the pandemic. There is severe urgency to understand the impact of COVID-19 risk perceptions and the extent people are willing to risk their lives by sheltering in place rather than evacuating during severe hurricanes. In June 2020, a survey (in both English and Spanish) of 40 questions was disseminated through regional planning councils, emergency management, and the media to Florida residents. A total of 7,072 people responded from over 50 counties. Most data obtained were ordinal or categorical in nature, encouraging usage of nonparametric analysis and chi-square tests. Almost half the respondents view themselves as vulnerable to COVID-19 due to preexisting health conditions, and 74.3% of individuals viewed the risk of being in a shelter during the COVID-19 pandemic as more dangerous than enduring hurricane hazards. Additionally, there was a significant number of individuals who would choose to not utilize a public shelter during COVID-19 when they would have previously. Officials can use the results of this study regarding how household evacuation plans change with social distancing to better inform strategies of shelter preparedness and COVID-19 risk mitigation to minimize risk to those in harm’s way of storm surge and other hurricane effects during a mandatory evacuation order.

Full access
Dawn Kopacz, Lindsay C. Maudlin, Wendilyn J. Flynn, Zachary J. Handlos, Adam Hirsch, and Swarndeep Gill

Abstract

Increasing participation in education research and encouraging the use of evidence-based practices in the classroom has been identified as a Grand Challenge in the Geosciences. As a first step in addressing this Grand Challenge, a survey was developed and disseminated to a broad range of atmospheric science professionals to collect data about 1) the number of community members involved in atmospheric science education research (ASER); 2) whether ASER is valued within the community, and if so, to what extent; 3) potential barriers to involvement in ASER; and 4) the resources necessary to encourage involvement in ASER. Survey results revealed that while many in the atmospheric science community highly value education research, barriers to greater involvement include a perceived lack of value and a lack of visibility of ASER. Recommendations are made for addressing these barriers.

Full access
Massimo Bonavita, Rossella Arcucci, Alberto Carrassi, Peter Dueben, Alan J. Geer, Bertrand Le Saux, Nicolas Longépé, Pierre-Philippe Mathieu, and Laure Raynaud
Full access