Browse

You are looking at 61 - 70 of 8,483 items for :

  • Journal of Physical Oceanography x
  • Refine by Access: All Content x
Clear All
Lloyd Reese
,
Ulf Gräwe
,
Knut Klingbeil
,
Xiangyu Li
,
Marvin Lorenz
, and
Hans Burchard

Abstract

Salt mixing enables the transport of water between the inflow and outflow layers of estuarine circulation and therefore closes the circulation by driving a diahaline exchange flow. A recently derived universal law links the salt mixing inside an estuarine volume bounded by an isohaline surface to freshwater discharge: it states that on long-term average, the area-integrated mixing across the bounding isohaline is directly proportional to the freshwater discharge entering the estuary. However, even though numerous studies predict that periods of extreme discharge will become more frequent with climate change, the direct impact of such periods on estuarine mixing and circulation has yet to be investigated. Therefore, this numerical modeling study focuses on salinity mixing and diahaline exchange flows during a low-discharge and an extreme high-discharge period. To this end, we apply a realistic numerical setup of the Elbe estuary in northern Germany, using curvilinear coordinates that follow the navigational channel. This is the first time the direct relationship between diahaline exchange flow and salt mixing as well as the spatial distribution of the diahaline exchange flow are shown in a realistic tidal setup. The spatial distribution is highly correlated with the local mixing gradient for salinity, such that inflow occurs near the bottom at the upstream end of the isohaline. Meanwhile, outflow occurs near the surface at its downstream end. Lastly, increased vertical stratification occurs within the estuary during the high-discharge period, while estuarine-wide mixing strongly converges to the universal law for averaging periods of the discharge event time scale.

Restricted access
Knut Klingbeil
and
Erika Henell

Abstract

In this paper we present the analytical derivation of a local Water Mass Transformation (WMT) framework for an individual water column. We exactly formulate the mapping of the governing equations from geopotential coordinates to an arbitrary tracer space. Unique definitions for the local effective vertical dia-surface fluxes are given. In tracer space we derive new relations between the local dia-tracer fluxes and the mixing per tracer class. The key relation between the effective vertical dia-tracer velocity and the mixing per tracer class directly formulates how the overturning circulation is linked to local tracer variance dissipation. Horizontal integration of the governing equations in tracer space and the relations between the dia-tracer quantities finally recovers the well-known integral WMT formulations.

Restricted access
Free access
Shuiqing Li

Abstract

The wind drag on the sea surface is characterized by the aerodynamic roughness of the sea surface, z 0, which is regulated by surface wind waves. Many studies have related the dimensionless form of z 0 to the wave age parameter estimated from spectral peak information. These parametric relationships have been well developed for the wind-driven sea but not for mixed seas. Based on an analysis using observations from a fixed platform in the northern South China Sea, the deficiency of the spectral peak information in the parametric description z 0 when swells dominate is indicated. Instead, a consistent parametric description of z 0 can be obtained by using the wave age estimated from the mean wave period, and normalizing z 0 by the mean wavelength. Normalizing z 0 by the significant wave height introduces a spurious residual dependence of z 0 on the wave steepness. A parametric relationship is developed between the dimensionless z 0 (normalized by the mean wavelength) and the wave age from the mean wave period. A comparison of this new relationship to the wind-speed-only formulation in COARE 3.5 is provided.

Significance Statement

In this paper, a consistent parametric description of the wave age dependence of the surface aerodynamic roughness is presented, with a wide range of sea states from dominant wind-driven seas to mixed seas in which the swells are dominant.

Open access
Min Wang
,
Xiao-Hua Zhu
,
Hua Zheng
,
Juntian Chen
,
Zhao-Jun Liu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
,
Fei Yu
, and
Qiang Li

Abstract

Using a large-scale observation array of 27 simultaneous pressure-recording inverted echo sounders (PIESs), the standing wave features of the mode-1 M2 internal tide west of the Luzon Strait (LS) were identified. These features exhibited nonmonotonic spatial phase shifts and half-wavelength amplitude modulation, resulting in spatially varying amplitudes under PIES observations, which have not been previously observed in field observations west of the LS. Satellite altimeter measurements also identified standing-wave patterns consistent with the PIES observations. These patterns emanated from interference between the northwestward and southeastward beams from the LS and the slope of the southern Taiwan Strait, respectively. Near the LS, the two beams superimposed into partial standing waves, whereas the superimposed waves tended to become perfect standing waves near the slope of the southern Taiwan Strait. The nodes and antinodes of the wave shifted under the influence of an anticyclonic eddy. The eddy-induced background current modified the phase speed of the internal tides, and the superimposed standing-wave nodes and antinodes deflected clockwise. The node shifted during three anticyclonic eddy events, and two stations on two sides of the wave node showed opposite variations in amplitude.

Significance Statement

The internal tidal constituent (M2) propagating in opposite directions can result in standing waves, which have been frequently observed in global oceans but were absent west of the Luzon Strait (LS). Our observations (based on a large-scale array west of the LS) discovered a standing M2 internal tide, which stems from interference between the northwestward beams emanating from the LS and southeastward beams from the slope of the southern Taiwan Strait. Anticyclonic eddies play important roles in adjusting the amplitude of internal tides by deflecting the standing-wave nodes and antinodes clockwise. The study facilitates the understanding of the energy distribution and mixing processes west of the LS and provides a fresh perspective on the dynamic relationship between mesoscale perturbations and internal tides.

Restricted access
Alejandro Cáceres-Euse
,
Veronica Morales-Márquez
, and
Anne Molcard

Abstract

This study analyzes horizontal and vertical wind-driven circulation responses in small semienclosed bays, the associated offshore dynamic conditions, and the relative importance of each term in the momentum balance equations using a multiplatform observational system. The observational platform consists of three ADCPs and a land-based radar monitoring the velocity field within the bay and in the contiguous offshore area. The wind-driven patterns in the bay can switch from a barotropic cyclonic or anticyclonic circulation to a two-layer baroclinic mode response as a function of the wind regime (its direction and magnitude). For the baroclinic mode, the vertical location of the inflection point in the velocity profile can vary according to the proximity of the boundary current to the entrance of the bay. The influence of offshore combined meteorological and marine conditions on the inner-bay dynamics is evidenced under moderate to strong wind conditions and is almost nonexistent under negligible wind. The momentum balance analysis as well as the nondimensional numbers evidence the impact of wind stress, coastline shape, stratification, and the nonlinear advective terms. Advection can be at the same order of magnitude as pressure gradient, Coriolis, or wind stress terms and can be greater than the bottom stress terms. The nonlinear terms in the momentum equations are frequently neglected when analyzing wind-driven circulation by means of in situ data or analytical models.

Restricted access
Leah Johnson
,
Baylor Fox-Kemper
,
Qing Li
,
Hieu T. Pham
, and
Sutanu Sarkar

Abstract

This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical principles of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column (SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behavior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameterizations most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES. Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during wind-driven deepening of the mixed layer and 2) under strong diurnal forcing.

Restricted access
Lei Han

Abstract

The continuous, moored observation revealed significant variability in the strength of the Atlantic meridional overturning circulation (AMOC). The cause of such AMOC variability is an extensively studied subject. This study focuses on the short-term variability, which ranges up to seasonal and interannual time scales. A mechanism is proposed from the perspective of ocean water redistribution by layers. By offering explanations for four phenomena of AMOC variability in the subtropical and tropical oceans (seasonality, meridional coherence, layered-transport compensation as observed at 26.5°N, and the 2009/10 downturn that occurred at 26.5°N), this mechanism suggests that the short-term AMOC variabilities in the entire subtropical and tropical regions are governed by a basinwide adiabatic water redistribution process, or the so-called sloshing dynamics, rather than diapycnal processes.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a key component in the global climate system due to its immense power in redistributing heat meridionally, which contributes to the hospitable climate of the United Kingdom and western Europe. Therefore, any changes in AMOC can have significant impacts on both global and local climate variability. Here I propose a mechanism to explain the short-term (up to interannual) AMOC variability in the subtropical and tropical regions from the perspective of ocean water redistribution. This mechanism suggests that the short-term variability of AMOC strength is dominated by an adiabatic process, and thus, its large-amplitude variation is mostly a reversible process. In other words, AMOC may be more resilient to short-term variability than previously believed, and it could recover autonomously from the abrupt changes.

Restricted access
Zhumin Lu
,
Guihua Wang
, and
Xiaodong Shang

Abstract

The large-scale ocean circulation in an ocean basin was previously thought to be impacted cumulatively by all the overlying tropical cyclones (TCs). Based on idealized numerical experiments and altimetry observation, this study reveals that, unnecessarily by cumulative impacts, a single TC actually has the ability to plow the large-scale sea surface height (SSH) field due to the TC-induced geostrophic response. This ability is dictated by the along-track length scale of the geostrophic response, i.e., the total track length. Some of the observed along-track signals, including the SSH trough, jet, and SSH rise, can confirm the TC-induced large-scale impacts. Shortly after the TC passage, the observable large-scale signals are generally the SSH trough. However, the jet and the SSH rise easily emerge from the evolved SSH trough due to Rossby wave dispersion. By identifying and tracking the observable signals, this study demonstrates that the subtropical gyre primarily over 4°–20°N, 122°E–180° is plowed by nine typhoons (2015) into several large blocks of SSH troughs and SSH rises. These long-lived SSH troughs and SSH rises dominate the upper-layer circulation from April to December in 2015. If the large-scale signals cannot be observed, the estimated TC-induced mean SSH decreases suggest that the large-scale impacts may still exist but merely cannot be seen intuitively. This study provides compelling observational evidence for the TC-induced large-scale impacts, further highlighting that TCs may play a nonnegligible role in the upper-ocean dynamics in the subtropical gyre.

Significance Statement

This study aims to demonstrate the ability of a typhoon to affect the large-scale ocean dynamics. The ability manifests as some along-track signals in altimetry observations, including sea surface height trough, jet, and sea surface height rise, which can be frequently observed after some typhoons in 2015. The sea surface height field in the western North Pacific is continuously plowed by these typhoons into several large blocks of sea surface height troughs and rises. These long-lived sea surface height troughs and rises dominate the upper-layer circulation from April to December in 2015. This study indicates that typhoons play a vital role in the upper-ocean dynamics in the western North Pacific.

Restricted access
Aviv Solodoch
,
Roy Barkan
,
Vicky Verma
,
Hezi Gildor
,
Yaron Toledo
,
Pavel Khain
, and
Yoav Levi

Abstract

The East Mediterranean Sea (EMS) circulation has previously been characterized as dominated by gyres, mesoscale eddies, and disjoint boundary currents. We develop nested high-resolution numerical simulations in the EMS to examine the circulation variability with an emphasis on the yet unexplored regional submesoscale currents. Rather than several disjoint currents, a continuous cyclonic boundary current (BC) encircling the Levantine basin is identified in both model solution and altimetry data. This EMS BC advects eddy chains downstream and is identified as a principal source of regional mesoscale and submesoscale current variability. During the seasonal fall to winter mixed layer deepening, energetic submesoscale [O(10) km] eddies, fronts, and filaments emerge throughout the basin, characterized by O(1) Rossby numbers. A submesoscale time scale range of ≈1–5 days is identified using spatiotemporal analysis of the numerical solutions and confirmed through mooring data. The submesoscale kinetic energy (KE) wavenumber (k) spectral slope is found to be k −2, shallower than the quasigeostrophic-like ∼k −3 slope diagnosed in summer. The shallowness of the winter spectral slope is shown to be due to divergent subinertial motions, consistent with the Boyd theoretical model, rather than with the surface quasigeostrophic model. Using a coarse-graining approach, we diagnose a seasonal inverse (forward) KE cascade above (below) 30-km scales due to rotational (divergent) motions and show that these commence after completion of the fall submesoscale energization. We also show that at scales larger than several hundred kilometers, the spectral density becomes near constant and a weak forward cascade occurs, from gyre scales to mesoscales.

Restricted access