Browse

You are looking at 1 - 10 of 71,180 items for :

  • Refine by Access: All Content x
Clear All
Minghua Zheng
,
Ryan Torn
,
Luca Delle Monache
,
James Doyle
,
Fred Martin Ralph
,
Vijay Tallapragada
,
Christopher Davis
,
Daniel Steinhoff
,
Xingren Wu
,
Anna Wilson
,
Caroline Papadopoulos
, and
Patrick Mulrooney

Abstract

During a 6-day intensive observing period in January 2021, Atmospheric River Reconnaissance (AR Recon) aircraft sampled a series of atmospheric rivers (ARs) over the northeastern Pacific that caused heavy precipitation over coastal California and the Sierra Nevada. Using these observations, data denial experiments were conducted with a regional modeling and data assimilation system to explore the impacts of research flight frequency and spatial resolution of dropsondes on model analyses and forecasts. Results indicate that dropsondes significantly improve the representation of ARs in the model analyses and positively impact the forecast skill of ARs and quantitative precipitation forecasts (QPF), particularly for lead times > 1 day. Both reduced mission frequency and reduced dropsonde horizontal resolution degrade forecast skill. On the other hand, experiments that assimilated only G-IV data and experiments that assimilated both G-IV and C-130 data show better forecast skill than experiments that only assimilated C-130 data, suggesting that the additional information provided by G-IV data is necessary for improving forecast skill. Although this is a case study, the 6-day period studied encompassed multiple AR events that are representative of typical AR behavior. Therefore, the results indicate that future operational AR Recon missions incorporate daily mission or back-to-back flights, maintain current dropsonde spacing, support high-resolution data transfer capacity on the C-130s, and utilize G-IV aircraft in addition to C-130s.

Restricted access
Adrien Pierre
,
Daniel F. Nadeau
,
Antoine Thiboult
,
Alain N. Rousseau
,
François Anctil
,
Charles P. Deblois
,
Maud Demarty
,
Pierre-Erik Isabelle
, and
Alain Tremblay

Abstract

The hydrological processes of cascading hydroelectric reservoirs differ from those of lakes, due to the importance of the inflows and outflows that vary with energy demand. These heat and water advection terms are rarely considered in water body energy balance analyses even though reservoirs are common man-made structures, especially in North America, and thus may affect the regional climate. This study provides a comprehensive assessment of the water and energy balance of the 85-km2 Romaine-2 northern reservoir (50.69°N, 63.24°W), mean depth of 44 m, highlighting the significant contribution of the advection heat fluxes. The water balance input was primarily controlled by upstream (turbine) inflows (77.6%), while lateral (natural) inflows and direct precipitation represented 21.2% and 1.2%, respectively. As for the reservoir’s heat budget, the net advection of heat accounted on average for 25.0% of the input, of which net radiation was the largest component (73.3%). After accounting for the absence of energy balance closure, latent heat and sensible heat fluxes represented 73.2% and 25.1% of total energy output from the reservoir, respectively. The thermal regime was influenced by the hydrological flow conditions, which were regulated by reservoir management. This played a major role in the evolution of the thermocline and the temperature of the epilimnion, and ultimately, in the dynamics of the turbulent heat fluxes. This study suggests that the heat advection term represents a large fraction of the heat budget of northern reservoirs and should be properly considered.

Restricted access
Haochen Tan
,
Rao Kotamarthi
, and
Pallav Ray

Abstract

The surface sensible heat flux induced by precipitation (QP ) is a consequence of the temperature difference between the surface and the rain droplets. Despite its seemingly negligible nature, QP is frequently omitted from both meteorological and climatological models. Nevertheless, it is important to acknowledge the numerous occasions in which the instantaneous values of QP can be significant, particularly during extreme precipitation events. This study undertakes a comprehensive assessment of QP across the contiguous United States (CONUS) utilizing high-resolution reanalysis, observational data, and numerical modeling to examine the influence of QP on precipitation and the surface energy budget. The findings indicate that the spatial distribution of QP climatology is analogous to that of precipitation, with magnitudes ranging from 2 to 3 W m−2 predominantly over the Midwest and Southeast regions. A seasonal analysis of QP reveals that the highest values occurring during the June–August (JJA) period, averaging 3.18 W m−2. Peak QP values of approximately 4 W m−2 are observed during JJA over the Great Plains region. We hypothesize that the QP during an extreme precipitation event would be nonnegligible and have a significant impact on the local weather. To test this conjecture, we perform high-resolution simulations with and without QP during an extreme precipitation event over the Chicago Metropolitan Area (CMA). The results show that the QP may be a dominant factor compared to other components of surface heat flux during the zenith of precipitation hours. Also, QP has the potential to not only diminish precipitation but also alter and reconfigure the remaining surface energy budget components.

Open access
Alex J. Cannon

Abstract

Canadian climate service providers offer projections from the Coupled Model Intercomparison Project (CMIP6) to help inform climate change mitigation and adaptation decisions. CMIP6 includes several “hot” climate models whose sensitivity to greenhouse gas forcings exceeds the likely range inferred from multiple lines of evidence. Global warming estimates assessed in the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) were reduced by applying observational constraints on the historical rate of warming to the CMIP6 ensemble. This study assesses whether globally constrained CMIP6 projections for Canada are appreciably different from unconstrained projections. Two constraints are considered: one that removes models whose transient climate response lies outside the AR6 assessed range (TCRlikely), and the other that weights models to match the assessed distribution of equilibrium climate sensitivity (ECSall). Both constraints lead to appreciably cooler and drier projections than the unconstrained ensemble, with the strongest reductions seen in the upper end of the ensemble range, high-emissions scenario, end-of-century time period, and northern regions of Canada. In this case, constrained projections of annual mean temperature are 2°–3°C cooler than the unconstrained projections, whereas projections of annual total precipitation are typically 20%–40% drier. Appreciable differences are also detected in the ensemble median of temperature extreme indices. Based on these results, it is recommended that a constrained ensemble be considered for regional projections to avoid the “hot model” problem. Alternatively, projections can be communicated conditional on a specified level of global warming, with global constraints then used to inform the timing of the warming level exceedance.

Open access
Paul A. Sanders
,
Martijn D. Dorrestijn
, and
Theo Gerkema

Abstract

The along-slope propagation of subinertial trapped internal tides is studied for the configuration of a simple step. It is revealed that they form a beam structure in the along-slope direction that is evanescent above the top of the step; these beams lack strict periodicity in the along-slope direction. As in classical internal Kelvin waves, they become less sharp away from the step, as higher modes decay more rapidly in the cross-slope direction. We discuss implications for abyssal mixing and outline the necessary ingredients for their generation.

Restricted access
Vasileios Savvakis
,
Martin Schön
,
Matteo Bramati
,
Jens Bange
, and
Andreas Platis

Abstract

The negative effects of relative humidity to measurements of particulate matter (PM) due to hygroscopic growth are often not inherently handled by low-cost optical particle counters (OPCs). This study presents a new approach in constructing a miniaturized diffusion dryer, for use with an OPC mounted on an uncrewed aircraft system (UAS), namely, the DJI S900 (weight of 7.5 kg and flight endurance of 20 min) for short-term measurements under humid conditions. In this work, an OPC of type N3 (Alphasense) was employed alongside the dryer, with experiments both in the laboratory and outdoors. Evaluation of the dryer’s performance in a fog tank showed effective drying from almost saturated air to 41% relative humidity for 35 min, which is longer than the endurance of the UAS, and therefore sufficient. Changes in the flow rate through the OPC-N3 with the dryer showed a 17% reduction compared to an absent dryer, but the measured PM values remained unaffected. Airborne measurements were taken from four hovering flights near a governmental air pollution station (Mannheim-Nord, Germany) under humid conditions (88%–93%) where the system gave agreeable concentrations when the dryer was in place, but significantly overestimated all PM types without it. At a rural area near the Boundary Layer Field Site Falkenberg (Lindenberg, Germany), operated by the German Meteorological Service (DWD), vertical profiles inside a low-altitude cloud showed sharp increase in concentrations when the UAS entered the cloud layer, demonstrating its capability to accurately detect the layer base.

Restricted access
Tess W. P. Jacobson
,
Richard Seager
,
A. Park Williams
,
Isla R. Simpson
,
Karen A. McKinnon
, and
Haibo Liu

Abstract

On seasonal time scales, vapor pressure deficit (VPD) is a known predictor of burned area in the southwestern United States (“the Southwest”). VPD increases with atmospheric warming due to the exponential relationship between temperature and saturation vapor pressure. Another control on VPD is specific humidity, such that increases in specific humidity can counteract temperature-driven increases in VPD. Unexpectedly, despite the increased capacity of a warmer atmosphere to hold water vapor, near-surface specific humidity decreased from 1970 to 2019 in much of the Southwest, particularly in spring, summer, and fall. Here, we identify declining near-surface humidity from 1970 to 2019 in the southwestern United States with both reanalysis and in situ station data. Focusing on the interior Southwest in the months preceding the summer forest fire season, we explain the decline in terms of changes in atmospheric circulation and moisture fluxes between the surface and the atmosphere. We find that an early spring decline in precipitation in the interior region induced a decline in soil moisture and evapotranspiration, drying the lower troposphere in summer. This prior season precipitation decline is in turn related to a trend toward a Northern Hemisphere stationary wave pattern. Finally, using fixed humidity scenarios and the observed exponential relationship between VPD and burned forest area, we estimate that with no increase in temperature at all, the humidity decline alone would still lead to nearly one-quarter of the observed VPD-induced increase in burned area over 1984–2019.

Significance Statement

Burned forest area has increased significantly in the southwestern United States in recent decades, driven in part by an increase in atmospheric aridity [vapor pressure deficit (VPD)]. Increases in VPD can be caused by a combination of increasing temperature and decreasing specific humidity. As the atmosphere warms with climate change, its capacity to hold moisture increases. Despite this, there is a decrease in near-surface air humidity in the interior southwestern United States over 1970–2019, which during the summer is likely caused by a decline in early spring precipitation leading to limited soil moisture and evaporation in spring and summer. We estimate that this declining humidity alone, without an increase in temperature, would cause about one-quarter of the VPD-induced increase in burned forest area in this region over 1984–2019.

Restricted access
Scott W. Powell

Abstract

An idealized large-eddy simulation of a tropical marine cloud population was performed. At any time, it contained hundreds of clouds, and updraft width in shallow convection emerging from a subcloud layer appeared to be an important indicator of whether specific convective elements deepened. In an environment with 80%–90% relative humidity below the 0°C level, updrafts that penetrated the 0°C level were larger at and above cloud base, which occurred at the lifting condensation level near 600 m. Parcels rising in these updrafts appeared to emerge from boundary layer eddies that averaged ∼200 m wider than those in clouds that only reached 1.5–3 km height. The deeply ascending parcels (growers) possessed statistically similar values of effective buoyancy below the level of free convection (LFC) as parcels that began to ascend in a cloud but stopped before reaching 3000 m (nongrowers). The growers also experienced less dilution above the LFC. Nongrowers were characterized by negative effective buoyancy and rapid deceleration above the LFC, while growers continued to accelerate well above the LFC. Growers occurred in areas with a greater magnitude of background convergence (or weaker divergence) in the subcloud layer, especially between 300 m and cloud base, but whether the convergence actually led to eddy widening is unclear.

Significance Statement

Cumulonimbus clouds are responsible for many extreme weather phenomena and are important contributors to Earth’s energy balance. However, the processes leading to the growth of individual clouds are not completely understood nor well-represented in weather prediction models. We find that the clouds containing updrafts that start out wider at early stages of their life cycles grow taller, possibly because they are protected more from drier air outside the cloud than narrow clouds. In addition, this work shows how the initial width of clouds might be related to convergence in the lowest part of the atmosphere, at heights where clouds initially develop. However, meteorologists must be careful not to overinterpret these results because numerical simulations inherently include assumptions that may not reflect reality. This reinforces the need to also observe processes occurring at the scales of individual clouds.

Open access
Linfan Zhou
,
Lili Lei
,
Jeffrey S. Whitaker
, and
Zhe-Min Tan

Abstract

Hyperspectral infrared (IR) satellites can provide high-resolution vertical profiles of the atmospheric state, which significantly contributes to the forecast skill of numerical weather prediction, especially for regions with sparse observations. One challenge in assimilating the hyperspectral radiances is how to effectively extract the observation information, due to the interchannel correlations and correlated observation errors. An adaptive channel selection method is proposed, which is implemented within the data assimilation scheme and selects the radiance observation with the maximum reduction of variance in observation space. Compared to the commonly used channel selection method based on the maximum entropy reduction (ER), the adaptive method can provide flow-dependent and time-varying channel selections. The performance of the adaptive selection method is evaluated by assimilating only the synthetic Fengyun-4A (FY-4A) GIIRS IR radiances in an observing system simulation experiment (OSSE), with model resolutions from 7.5 to 1.5 km and then 300 m. For both clear-sky and all-sky conditions, the adaptive method generally produces smaller RMS errors of state variables than the ER-based method given similar amounts of assimilated radiances, especially with fine model resolutions. Moreover, the adaptive method has minimum RMS errors smaller than or approaching those with all channels assimilated. For the intensity of the tropical cyclone, the adaptive method also produces smaller errors of the minimum dry air mass and maximal wind speed at different levels, compared to the ER-based selection method.

Significance Statement

Assimilating satellite radiances has been essential for numerical weather prediction. Hyperspectral infrared satellites provide high-resolution vertical profiles for the atmospheric state and can further improve the numerical weather prediction. Due to limited computational resources, and correlated observations and associated errors, efficient and effective ways to assimilate the hyperspectral radiances are needed. An adaptive channel selection method that is incorporated with data assimilation is proposed. The adaptive channel selection can effectively extract the information from hyperspectral radiances under both clear- and all-sky conditions, with increased model resolutions from kilometers to subkilometers.

Restricted access
Carrie Lewis-Merritt
,
Justin P. Stachnik
,
Margaret A. Hollis
,
Elinor R. Martin
, and
Rachel R. McCrary

Abstract

Tropical easterly waves (TEWs) play a critical role in regulating convection and precipitation across the global tropics. TEWs act as seed disturbances for tropical cyclogenesis, serve as an essential component in monsoon precipitation, and produce large amounts of rainfall and diabatic heating that can strongly affect the large-scale circulation. To help improve our knowledge of a more elusive type of tropical wave, we use satellite and reanalysis estimates of the diabatic heating associated with TEWs that are identified by a tracking algorithm based on low-level curvature vorticity. This study uses the Tropical Rainfall Measuring Mission (TRMM) version 6 convective–stratiform heating (CSH) and spectral latent heating (SLH) orbital products to create a global climatology (1998–2015) of TEW diabatic heating. TEW-specific composites for the satellite-observed vertical structure of diabatic heating are compared to similar terms from MERRA-2 across a variety of tropical regions. There are striking differences between the reanalysis and satellite heating with MERRA-2 having much stronger background heating, especially at low levels. Both the satellite-observed and reanalysis heating profiles show stronger midlevel heating associated with TEWs relative to the unconditional background. Similar patterns of mid- and bottom-heaviness emerge in two-dimensional composites of TEW latent heating as stronger heating rates and percent contributions to the background are generally higher at 500 hPa than at 850 hPa. Although TEWs only represent a few percent of the background heating across the global tropics, they comprise 30%–50% of the heating in the prominent TEW tracks over the northeastern Atlantic and Pacific Oceans.

Restricted access